A320861 Powers of 2 with initial digit 5.
512, 524288, 536870912, 549755813888, 562949953421312, 576460752303423488, 590295810358705651712, 5070602400912917605986812821504, 5192296858534827628530496329220096, 5316911983139663491615228241121378304, 5444517870735015415413993718908291383296
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..263
- Index to divisibility sequences
Crossrefs
Programs
-
GAP
Filtered(List([0..160],n->2^n),i->ListOfDigits(i)[1]=5);
-
Magma
[2^n: n in [1..200] | Intseq(2^n)[#Intseq(2^n)] eq 5]; // Vincenzo Librandi, Oct 25 2018
-
Maple
select(x->"5"=""||x[1],[2^n$n=0..160])[]; # Alternative: Res:= NULL: count:= 0: for k from 1 to 49 do n:= ilog2(6*10^k); if n > ilog2(5*10^k) then count:= count+1; Res:= Res, 2^n; fi od: Res; # Robert Israel, Oct 26 2018
-
Mathematica
Select[2^Range[200], First[IntegerDigits[#]]==5 &] (* Vincenzo Librandi, Oct 25 2018 *)
-
PARI
lista(nn) = {for(n=1, nn, x = 2^n; if (digits(x=2^n)[1] == 5, print1(x, ", ")););} \\ Michel Marcus, Oct 25 2018