A320892 Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into distinct semiprimes.
16, 64, 81, 96, 144, 160, 224, 256, 324, 352, 384, 400, 416, 486, 544, 576, 608, 625, 640, 729, 736, 784, 864, 896, 928, 960, 992, 1024, 1184, 1215, 1296, 1312, 1344, 1376, 1408, 1440, 1504, 1536, 1600, 1664, 1696, 1701, 1888, 1936, 1944, 1952, 2016, 2025
Offset: 1
Keywords
Examples
A complete list of all factorizations of 1296 into semiprimes is: 1296 = (4*4*9*9) 1296 = (4*6*6*9) 1296 = (6*6*6*6) None of these is strict, so 1296 belongs to the sequence.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
strsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]]; Select[Range[1000],And[EvenQ[PrimeOmega[#]],strsemfacs[#]=={}]&]
-
PARI
A322353(n, m=n, facs=List([])) = if(1==n, my(u=apply(bigomega,Vec(facs))); (0==length(u)||(2==vecmin(u)&&2==vecmax(u))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A322353(n/d, d-1, newfacs))); (s)); isA300892(n) = if(bigomega(n)%2,0,(0==A322353(n))); \\ Antti Karttunen, Dec 06 2018
Comments