cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320906 T(n, k) = binomial(2*n - k, k - 1)*hypergeom([2, 2, 1 - k], [1, 2*(1 - k + n)], -1), triangle read by rows, T(n,k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 1, 6, 0, 1, 8, 24, 0, 1, 10, 39, 80, 0, 1, 12, 58, 150, 240, 0, 1, 14, 81, 256, 501, 672, 0, 1, 16, 108, 406, 955, 1524, 1792, 0, 1, 18, 139, 608, 1686, 3178, 4339, 4608, 0, 1, 20, 174, 870, 2794, 6144, 9740, 11762, 11520
Offset: 0

Views

Author

Peter Luschny, Oct 28 2018

Keywords

Examples

			Triangle starts:
[0] 0
[1] 0, 1
[2] 0, 1,  6
[3] 0, 1,  8,  24
[4] 0, 1, 10,  39,  80
[5] 0, 1, 12,  58, 150,  240
[6] 0, 1, 14,  81, 256,  501,  672
[7] 0, 1, 16, 108, 406,  955, 1524, 1792
[8] 0, 1, 18, 139, 608, 1686, 3178, 4339,  4608
[9] 0, 1, 20, 174, 870, 2794, 6144, 9740, 11762, 11520
		

Crossrefs

Row sums are A320907. T(n, n) = A001788(n).
Cf. A320905.

Programs

  • Maple
    T := (n, k) -> binomial(2*n-k, k-1)*hypergeom([2, 2, 1-k], [1, 2*(1-k+n)], -1):
    seq(seq(simplify(T(n, k)), k=0..n), n=0..9);
  • Mathematica
    T[n_, k_] := Sum[Binomial[2*n+1-k, 2*n+2-2*k+j]*Binomial[j+2, 2], {j,0, 2*n+1-k}]; Flatten[Table[T[n, k], {n, 0, 15}, {k, 0, n}]] (* Detlef Meya, Dec 31 2023 *)
  • PARI
    T(n, k) = {sum(j=0, 2*n+1-k, binomial(2*n+1-k, 2*n+2-2*k+j) * binomial(j+2,2))} \\ Andrew Howroyd, Dec 31 2023
    
  • Python
    from functools import cache
    @cache
    def T(n, k):
        if k <= 0 or n <= 0: return 0
        if k == 1: return 1
        if k == n: return n * (n + 1) * 2**(n - 2)
        return T(n-1, k) + 2*T(n-1, k-1) - T(n-2, k-2)
    for n in range(10): print([T(n, k) for k in range(n + 1)])
    # after Detlef Meya, Peter Luschny, Jan 01 2024

Formula

T(n, k) = Sum_{j=0..2*n+1-k} binomial(2*n+1-k, 2*n+2-2*k+j) * binomial(j+2,2). - Detlef Meya, Dec 31 2023