A320917 a(n) = sigma_2(n)*sigma_3(n)/sigma(n).
1, 15, 70, 219, 546, 1050, 2150, 3315, 5299, 8190, 13542, 15330, 26690, 32250, 38220, 51491, 79170, 79485, 124166, 119574, 150500, 203130, 268710, 232050, 330771, 400350, 419020, 470850, 684546, 573300, 895622, 811395, 947940, 1187550, 1173900, 1160481, 1826210, 1862490, 1868300, 1809990
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := DivisorSigma[2, n] * DivisorSigma[3, n] / DivisorSigma[1, n]; Array[a, 40] (* Amiram Eldar, Aug 01 2019 *) (#[[2]]#[[3]])/#[[1]]&/@Table[DivisorSigma[k,n],{n,40},{k,3}] (* Harvey P. Dale, Aug 14 2024 *)
-
PARI
a(n) = sigma(n,2)*sigma(n,3)/sigma(n)
Formula
a(n) = sigma_2(n)*sigma_3(n)/sigma(n).
Sum_{k=1..n} a(k) ~ c * n^5, where c = (Pi^6*zeta(5)/2700) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 2/p^4 + 1/p^6) = 0.1662831668... . - Amiram Eldar, Dec 01 2022
Comments