cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A343579 a(n) = Sum_{k=0..floor(n/2)} |Stirling1(n - k, k)|.

Original entry on oeis.org

1, 0, 1, 1, 3, 9, 36, 176, 1030, 7039, 55098, 486346, 4780445, 51787405, 613045468, 7873065045, 109021348618, 1619197654575, 25675094145535, 432908683794379, 7733991639921585, 145933532935469016, 2900112108790279902, 60543749629794205640, 1324677739541613767983
Offset: 0

Views

Author

Peter Luschny, Apr 20 2021

Keywords

Comments

Equals antidiagonal sums of the triangle of unsigned Stirling numbers of the first kind (A132393).

Crossrefs

Variant: A237653.

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[n - k, k]], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Vaclav Kotesovec, Apr 09 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, abs(stirling(n-k, k, 1))); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+x))) \\ Seiichi Manyama, Apr 08 2022

Formula

a(n) ~ n! / n^2. - Vaclav Kotesovec, Apr 09 2022
Showing 1-1 of 1 results.