A066166
Stanley's children's game. Class of n (named) children forms into rings with exactly one child inside each ring. We allow the case when outer ring has only one child. a(n) gives number of possibilities, including clockwise order (or which hand is held), in each ring.
Original entry on oeis.org
2, 3, 20, 90, 594, 4200, 34544, 316008, 3207240, 35699400, 432690312, 5672581200, 79991160144, 1207367605080, 19423062612480, 331770360922560, 5997105160795584, 114373526841360000, 2295170834453089920
Offset: 2
a(4)=20: 12 ways to make 2 hugs, 8 ways to make a 3-ring.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)
- Harvey P. Dale, Table of n, a(n) for n = 2..250
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- P. Flajolet, S. Gerhold and B. Salvy, On the non-holonomic character of logarithms, powers and the n-th prime function, arXiv:math/0501379 [math.CO], 2005.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(-1+1/(1-x)^x)); [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Aug 29 2018
-
Drop[With[{nn=20},CoefficientList[Series[1/(1-x)^x-1,{x,0,nn}],x] Range[ 0,nn]!],2] (* Harvey P. Dale, Sep 17 2011 *)
-
b(n):=if n=0 then 1 else (n-1)!*sum((1+1/i)*b(n-i-1)/(n-i-1)!,i,1,n-1);
makelist(a(n),n,2,10); /* Vladimir Kruchinin, Feb 25 2015 */
-
a(n)=if(n<0,0,n!*polcoeff(-1+1/(1-x+x*O(x^n))^x,n))
-
{a(n) = n!*polcoeff( sum(m=1,n, x^m/m! * prod(k=0,m-1,x + k) +x*O(x^n) ), n)}
for(n=2,20, print1(a(n),", ")) \\ Paul D. Hanna, Oct 26 2015
-
a(n) = n!*sum(k=0, n\2, abs(stirling(n-k, k, 1))/(n-k)!); \\ Seiichi Manyama, May 10 2022
A353252
Expansion of Sum_{k>=0} x^k * Product_{j=0..k-1} (j + 2 * x).
Original entry on oeis.org
1, 0, 2, 2, 8, 24, 100, 488, 2832, 19096, 147296, 1281392, 12422864, 132870368, 1554525152, 19750621216, 270817685568, 3986140113792, 62686410981696, 1048946532137216, 18608550117641728, 348854564104019072, 6891109834644748032, 143058034748452036352
Offset: 0
-
a[n_] := Sum[2^k * Abs[StirlingS1[n - k, k]], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+2*x)))
-
a(n) = sum(k=0, n\2, 2^k*abs(stirling(n-k, k, 1)));
A353253
Expansion of Sum_{k>=0} x^k * Product_{j=0..k-1} (j - x).
Original entry on oeis.org
1, 0, -1, -1, -1, -3, -14, -76, -480, -3491, -28792, -265708, -2713753, -30395515, -370509784, -4883351213, -69205187838, -1049436525897, -16956113955333, -290817728309779, -5277059794403117, -101005287980087110, -2033813167589257170, -42977173319758429942
Offset: 0
-
a[n_] := Sum[(-1)^k * Abs[StirlingS1[n - k, k]], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j-x)))
-
a(n) = sum(k=0, n\2, (-1)^k*abs(stirling(n-k, k, 1)));
A353254
Expansion of Sum_{k>=0} x^k * Product_{j=0..k-1} (j - 2 * x).
Original entry on oeis.org
1, 0, -2, -2, 0, 0, -12, -88, -608, -4664, -40032, -381200, -3993520, -45685472, -566975456, -7589393568, -109019255360, -1673050977024, -27321358963904, -473094230383616, -8659054324278528, -167044915214322816, -3387793305708038400, -72061754672510128384
Offset: 0
-
a[n_] := Sum[(-2)^k * Abs[StirlingS1[n - k, k]], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j-2*x)))
-
a(n) = sum(k=0, n\2, (-2)^k*abs(stirling(n-k, k, 1)));
A357901
a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n - 2*k,k)|.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 7, 27, 131, 771, 5320, 42119, 376174, 3740018, 40956593, 489749100, 6348744124, 88677555115, 1327628770657, 21208195526882, 360053293342379, 6473501562355779, 122874692176838047, 2455382300127368557, 51524333987938459606, 1132787775301639812263
Offset: 0
-
a(n) = sum(k=0, n\3, abs(stirling(n-2*k, k, 1)));
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+x^2)))
A357902
a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n - 3*k,k)|.
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 2, 6, 25, 123, 731, 5090, 40595, 364650, 3641903, 40026609, 480029801, 6237662582, 87298953249, 1309161984315, 20942605407386, 355971044728635, 6406714801013007, 121715861296354116, 2434125806029297550, 51113325326999860554, 1124432395936987325868
Offset: 0
-
a(n) = sum(k=0, n\4, abs(stirling(n-3*k, k, 1)));
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+x^3)))
A352802
Expansion of Sum_{k>=0} x^k * Product_{j=0..k-1} (j + 3 * x).
Original entry on oeis.org
1, 0, 3, 3, 15, 45, 198, 972, 5652, 37881, 289548, 2492640, 23906475, 253012653, 2930556024, 36883817127, 501315357690, 7318715960511, 114224260779891, 1897913866979529, 33449523840512127, 623265596538965334, 12241892922194658510, 252793167644378784006
Offset: 0
-
a[n_] := Sum[3^k * Abs[StirlingS1[n - k, k]], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+3*x)))
-
a(n) = sum(k=0, n\2, 3^k*abs(stirling(n-k, k, 1)));
A353289
a(n) = Sum_{k=0..floor(n/2)} (n-k)^k * |Stirling1(n-k,k)|.
Original entry on oeis.org
1, 0, 1, 2, 10, 51, 323, 2354, 19535, 181606, 1869549, 21110063, 259400501, 3445913273, 49207968328, 751698726580, 12231484211240, 211208935989003, 3857425360784596, 74292198980174828, 1504832580013205275, 31980327844846620785, 711498612995378484414
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+k*x)))
-
a(n) = sum(k=0, n\2, (n-k)^k*abs(stirling(n-k, k, 1)));
A353290
a(n) = Sum_{k=0..floor(n/2)} (n-k)^(n-2*k) * |Stirling1(n-k,k)|.
Original entry on oeis.org
1, 0, 1, 2, 19, 393, 15177, 939394, 85063260, 10599342278, 1739073390797, 363404567436467, 94224446795779884, 29683590039199285223, 11167286542016941966714, 4945143125245884296040780, 2546112368234517215955646341, 1508197687055444623135714912377
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, k*j+x)))
-
a(n) = sum(k=0, n\2, (n-k)^(n-2*k)*abs(stirling(n-k, k, 1)));
A357922
a(n) = Sum_{k=0..floor(n/5)} |Stirling1(n - 4*k,k)|.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 2, 6, 24, 121, 723, 5051, 40370, 363154, 3630565, 39929874, 479111219, 6228047601, 87188921464, 1307794924973, 20924276449014, 355707232027825, 6402657184129671, 121649439722758345, 2432972744390660437, 51092165603897459951
Offset: 0
-
a(n) = sum(k=0, n\5, abs(stirling(n-4*k, k, 1)));
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+x^4)))
Showing 1-10 of 10 results.
Comments