cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320964 a(n) = Sum_{j=0..n} Sum_{k=0..j} Stirling2(j - k, k).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 18, 40, 98, 262, 757, 2344, 7723, 26918, 98790, 380361, 1531699, 6434386, 28130891, 127729731, 601196429, 2928369918, 14738842362, 76547694742, 409718539682, 2257459567237, 12789959138944, 74439150889081, 444647798089246, 2723583835351856
Offset: 0

Views

Author

Peter Luschny, Nov 06 2018

Keywords

Comments

The row sums of A320955 seen as a triangle are the partial sums of the antidiagonal sums of the triangle of the Stirling set numbers.
Number of partitions of [n] into m blocks that are ordered with increasing least elements and where block m-j contains n-j (m in {0..n}, j in {0..m-1}). a(5) = 9: 12345, 1234|5, 123|4|5, 124|35, 12|3|4|5, 134|25, 13|24|5, 14|235, 1|2|3|4|5. - Alois P. Heinz, May 16 2023

Crossrefs

Row sums of A320955 seen as a triangle.

Programs

  • Maple
    ListTools:-PartialSums([seq(add(Stirling2(n-k, k), k=0..n), n=0..29)]);
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n>m,
          b(n-1, m)*m+b(n-1, m+1), `if`(n=m, 1, 0))
        end:
    a:= proc(n) a(n):= `if`(n=0, 0, a(n-1))+b(n, 0) end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2023
  • Mathematica
    a[n_] := Sum[Sum[StirlingS2[j - k, k], {k, 0, j}], {j, 0, n}]; Array[a, 30, 0] (* Amiram Eldar, Nov 06 2018 *)
    Table[Sum[StirlingS2[j-k,k],{j,0,n},{k,0,j}],{n,0,30}] (* Harvey P. Dale, May 15 2019 *)
  • PARI
    a(n)={sum(j=0, n, sum(k=0, j, abs(stirling(j-k, k, 2))))} \\ Andrew Howroyd, Nov 06 2018