A320964 a(n) = Sum_{j=0..n} Sum_{k=0..j} Stirling2(j - k, k).
1, 1, 2, 3, 5, 9, 18, 40, 98, 262, 757, 2344, 7723, 26918, 98790, 380361, 1531699, 6434386, 28130891, 127729731, 601196429, 2928369918, 14738842362, 76547694742, 409718539682, 2257459567237, 12789959138944, 74439150889081, 444647798089246, 2723583835351856
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..665
Programs
-
Maple
ListTools:-PartialSums([seq(add(Stirling2(n-k, k), k=0..n), n=0..29)]); # second Maple program: b:= proc(n, m) option remember; `if`(n>m, b(n-1, m)*m+b(n-1, m+1), `if`(n=m, 1, 0)) end: a:= proc(n) a(n):= `if`(n=0, 0, a(n-1))+b(n, 0) end: seq(a(n), n=0..30); # Alois P. Heinz, May 16 2023
-
Mathematica
a[n_] := Sum[Sum[StirlingS2[j - k, k], {k, 0, j}], {j, 0, n}]; Array[a, 30, 0] (* Amiram Eldar, Nov 06 2018 *) Table[Sum[StirlingS2[j-k,k],{j,0,n},{k,0,j}],{n,0,30}] (* Harvey P. Dale, May 15 2019 *)
-
PARI
a(n)={sum(j=0, n, sum(k=0, j, abs(stirling(j-k, k, 2))))} \\ Andrew Howroyd, Nov 06 2018
Comments