cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321013 a(n) = how many of {6,7,8} divide n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 04 2018

Keywords

Examples

			a(24) = 2 because 24 is divisible 6 and 8, i.e., by 2 of the numbers in {6, 7, 8}. _David A. Corneth_, Nov 05 2018
		

References

  • Senechal, Marjorie. "Introduction to lattice geometry." In M. Waldschmidt et al., eds., From Number Theory to Physics, pp. 476-495. Springer, Berlin, Heidelberg, 1992. See Cor. 3.7.

Programs

  • Maple
    d3:=proc(n) local c;  c:=0;
    if (n mod 6)=0 then c:=c+1; fi;
    if (n mod 7)=0 then c:=c+1; fi;
    if (n mod 8)=0 then c:=c+1; fi; c; end;
    [seq(d3(n),n=1..120)];
  • Mathematica
    a[n_]:=Sum[If[Mod[n,i]==0, 1, 0], {i ,6, 8}]; Array[a, 120] (* Stefano Spezia, Nov 05 2018 *)
    Table[Total[Boole[Divisible[n,{6,7,8}]]],{n,120}] (* Harvey P. Dale, Nov 09 2022 *)
  • PARI
    a(n) = sum(i = 6, 8, !(n%i)) \\ David A. Corneth, Nov 05 2018

Formula

a(n + 168) = a(n). - David A. Corneth, Nov 05 2018
Conjectures from Colin Barker, Nov 05 2018: (Start)
G.f.: x^6*(1 + 2*x + 4*x^2 + 5*x^3 + 7*x^4 + 8*x^5 + 10*x^6 + 9*x^7 + 9*x^8 + 6*x^9 + 6*x^10 + 3*x^11 + 3*x^12) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x^4)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = -a(n-1) - 2*a(n-2) - 2*a(n-3) - 3*a(n-4) - 3*a(n-5) - 3*a(n-6) - 2*a(n-7) - a(n-8) + a(n-10) + 2*a(n-11) + 3*a(n-12) + 3*a(n-13) + 3*a(n-14) + 2*a(n-15) + 2*a(n-16) + a(n-17) + a(n-18) for n>18.
(End)
From David A. Corneth, Nov 05 2018: (Start)
The above conjectures are true. The sequence is periodic with period 168. Let f(x) be the g.f. above. Then f(x + 168) = f(x).
The expression for a(n) holds for 19 <= n <= 1000, more than sufficient for a proof. (End)