cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A321074 Digits of one of the two 11-adic integers sqrt(3).

Original entry on oeis.org

5, 2, 6, 8, 1, 9, 9, 4, 3, 9, 2, 8, 3, 4, 9, 1, 9, 3, 3, 0, 5, 5, 0, 9, 8, 4, 1, 9, 6, 9, 3, 0, 7, 5, 8, 6, 3, 9, 0, 9, 7, 7, 9, 8, 10, 5, 8, 6, 9, 3, 5, 9, 4, 7, 2, 1, 1, 0, 1, 0, 8, 1, 6, 5, 7, 10, 8, 2, 4, 7, 8, 7, 2, 3, 3, 1, 10, 6, 0, 10, 0, 6, 2, 5, 1, 10, 3
Offset: 0

Views

Author

Jianing Song, Oct 27 2018

Keywords

Comments

This square root of 3 in the 11-adic field ends with digit 5. The other, A321075, ends with digit 6.

Examples

			...9093685703969148905503391943829349918625.
		

Crossrefs

Programs

  • PARI
    a(n) = truncate(sqrt(3+O(11^(n+1))))\11^n
    
  • PARI
    seq(n)={Vecrev(digits(truncate(sqrt(3 + O(11^n))), 11), n)} \\ Andrew Howroyd, Nov 03 2018

Formula

a(n) = (A321072(n+1) - A321072(n))/11^n.
For n > 0, a(n) = 10 - A321075(n).
This 11-adic integer equals the 11-adic limit as n -> oo of 2*T(11^n,5/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Dec 05 2022

A034946 Successive approximations to 11-adic integer sqrt(3).

Original entry on oeis.org

0, 5, 27, 753, 11401, 26042, 1475501, 17419550, 95368234, 738444877, 21959974096, 73834823298, 2356328188186, 11771613318349, 149862461894073, 3567610964143242, 7744859133558893, 421292427905708342, 1937633513403589655
Offset: 0

Views

Author

Keywords

Comments

Terms of A321072 without repetition. - Jianing Song, Oct 31 2018

References

  • K. Mahler, Introduction to p-Adic Numbers and Their Functions, Cambridge, 1973, p. 35.

Crossrefs

Cf. A321072.

Programs

  • PARI
    sqrt(3+O(11^40))
    
  • PARI
    A321072(n) = truncate(sqrt(3+O(11^n)))
    for(n=0, 50, if(valuation(A321072(n)^2-3, 11)!=valuation(A321072(n+1)^2-3, 11), print1(A321072(n), ", "))) \\ Jianing Song, Nov 01 2018

A321073 One of the two successive approximations up to 11^n for 11-adic integer sqrt(3). Here the 6 (mod 11) case (except for n = 0).

Original entry on oeis.org

0, 6, 94, 578, 3240, 135009, 296060, 2067621, 118990647, 1619502814, 3977450505, 211476847313, 782100188535, 22751098825582, 229887371689168, 609637205272409, 38204870730013268, 84154600593585429, 3622283800088641826, 42541704994534262193, 654132609478679725103
Offset: 0

Views

Author

Jianing Song, Oct 27 2018

Keywords

Comments

For n > 0, a(n) is the unique solution to x^2 == 3 (mod 11^n) in the range [0, 11^n - 1] and congruent to 6 modulo 11.
A321072 is the approximation (congruent to 5 mod 11) of another square root of 3 over the 11-adic field.

Examples

			6^2 = 36 = 3 + 3*11.
94^2 = 8836 = 3 + 73*11^2.
578^2 = 334084 = 3 + 251*11^3.
		

Crossrefs

Programs

  • PARI
    a(n) = truncate(-sqrt(3+O(11^n)))

Formula

For n > 0, a(n) = 11^n - A321072(n).
a(n) = Sum_{i=0..n-1} A321075(i)*11^i.
a(n) == (3 + sqrt(8))^(11^n) + (3 - sqrt(8))^(11^n) (mod 11^n). - Peter Bala, Dec 04 2022
Showing 1-3 of 3 results.