A321074 Digits of one of the two 11-adic integers sqrt(3).
5, 2, 6, 8, 1, 9, 9, 4, 3, 9, 2, 8, 3, 4, 9, 1, 9, 3, 3, 0, 5, 5, 0, 9, 8, 4, 1, 9, 6, 9, 3, 0, 7, 5, 8, 6, 3, 9, 0, 9, 7, 7, 9, 8, 10, 5, 8, 6, 9, 3, 5, 9, 4, 7, 2, 1, 1, 0, 1, 0, 8, 1, 6, 5, 7, 10, 8, 2, 4, 7, 8, 7, 2, 3, 3, 1, 10, 6, 0, 10, 0, 6, 2, 5, 1, 10, 3
Offset: 0
Examples
...9093685703969148905503391943829349918625.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Peter Bala, Using Chebyshev polynomials to find the p-adic square roots of 2 and 3, Dec 2022.
- Wikipedia, p-adic number
Programs
-
PARI
a(n) = truncate(sqrt(3+O(11^(n+1))))\11^n
-
PARI
seq(n)={Vecrev(digits(truncate(sqrt(3 + O(11^n))), 11), n)} \\ Andrew Howroyd, Nov 03 2018
Formula
For n > 0, a(n) = 10 - A321075(n).
This 11-adic integer equals the 11-adic limit as n -> oo of 2*T(11^n,5/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Dec 05 2022
Comments