cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321118 T(n,k) = A321119(n) - (-1)^k*A321119(n-2*k)/2 for 0 < k < n, with T(0,0) = 0 and T(n,0) = T(n,n) = A002530(n+1) for n > 0, triangle read by rows; unreduced numerator of the weights of Holladay-Sard's quadrature formula.

Original entry on oeis.org

0, 1, 1, 3, 10, 3, 4, 11, 11, 4, 11, 32, 26, 32, 11, 15, 43, 37, 37, 43, 15, 41, 118, 100, 106, 100, 118, 41, 56, 161, 137, 143, 143, 137, 161, 56, 153, 440, 374, 392, 386, 392, 374, 440, 153, 209, 601, 511, 535, 529, 529, 535, 511, 601, 209
Offset: 0

Views

Author

Keywords

Comments

The n-th row common denominator is factorized out and is given by A321119(n).
Given a continuous function f over the interval [0,n], the best quadrature formula in the sense of Holladay-Sard is given by Integral_{x=0..n} f(x) dx = Sum_{k=0..n} T(n,k)*f(k)/A321119(n). The formula is exact if f belongs to the class of natural cubic splines.

Examples

			Triangle begins (denominator is factored out):
    0;                                                 1/4
    1,   1;                                            1/2
    3,  10,   3;                                       1/8
    4,  11,  11,   4;                                  1/10
   11,  32,  26,  32,  11;                             1/28
   15,  43,  37,  37,  43,  15;                        1/38
   41, 118, 100, 106, 100, 118,  41;                   1/104
   56, 161, 137, 143, 143, 137, 161,  56;              1/142
  153, 440, 374, 392, 386, 392, 374, 440, 153;         1/388
  209, 601, 511, 535, 529, 529, 535, 511, 601, 209;    1/530
  ...
If f is a continuous function over the interval [0,3], then the quadrature formula yields Integral_{x=0..3} f(x) d(x) = (1/10)*(4*f(0) + 11*f(1) + 11*f(2) + 4*f(3)).
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.

Crossrefs

Programs

  • Mathematica
    alpha = (Sqrt[2] + Sqrt[6])/2; T[0,0] = 0;
    T[n_, k_] := If[n > 0 && k == 0 || k == n, (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*Sqrt[6]*(alpha^n + (-alpha)^(-n))), 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n)))];
    a321119[n_] := 2^(-Floor[(n - 1)/2])*((1 - Sqrt[3])^n + (1 + Sqrt[3])^n);
    Table[FullSimplify[a321119[n]*T[n, k]],{n, 0, 10}, {k, 0, n}] // Flatten
  • Maxima
    (b[0] : 0, b[1] : 1, b[2] : 1, b[3] : 3, b[n] := 4*b[n-2] - b[n-4])$ /* A002530 */
    d(n) := 2^(-floor((n - 1)/2))*((1 - sqrt(3))^n + (1 + sqrt(3))^n) $ /* A321119 */
    T(n, k) := if n = 0 and k = 0 then 0 else if n > 0 and k = 0 or k = n then b[n + 1] else d(n) - (-1)^k*d(n - 2*k)/2$
    create_list(ratsimp(T(n, k)), n, 0, 10, k, 0, n);

Formula

T(n,k)/A321119(n) = (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*sqrt(6)*(alpha^n + (-alpha)^(-n))) if k = 0 or k = n, and 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n))) if 0 < k < n, where alpha = (sqrt(2) + sqrt(6))/2.
T(n,k) = T(n,n-k).
T(n,k) = 4*T(n-2,k) - T(n-4,k), n >= k + 4.
T(2*n+2,k)*A001834(n+1) = A001834(n)*T(2*n,k) + 2*A003500(n)*T(2*n+1,k) for k < 2*n.
T(2*n+3,k)*A003500(n+1) = A003500(n)*T(2*n+1,k) + 2*A001834(n+1)*T(2*n+2,k) for k < 2*n + 1.
Sum_{k=0..n} T(n,k)/A321119(n) = n.

A321121 Triangle read by rows: T(n,k) is the unreduced numerator of the k-th weight in the quadrature rule for parabolic runout spline with respect to a mesh of n + 1 points.

Original entry on oeis.org

0, 1, 1, 1, 4, 1, 3, 9, 9, 3, 13, 44, 30, 44, 13, 35, 115, 90, 90, 115, 35, 16, 53, 40, 46, 40, 53, 16, 131, 433, 330, 366, 366, 330, 433, 131, 179, 592, 450, 504, 486, 504, 450, 592, 179, 163, 539, 410, 458, 446, 446, 458, 410, 539, 163, 668, 2209, 1680, 1878, 1824, 1842, 1824, 1878, 1680, 2209, 668
Offset: 0

Views

Author

Keywords

Comments

The weights in this quadrature rule are T(n,k)/A321122(n), 0 <= k <= n. For n = 1, 2, 3, we obtain the trapezoid rule, Simpson's rule, and Simpson's 3/8 rule, respectively.

Examples

			Triangle begins (denominator is factored out):
    0;                                                 1/4
    1,   1;                                            1/2
    1,   4,   1;                                       1/3
    3,   9,   9,   3;                                  1/8
   13,  44,  30,  44,  13;                             1/36
   35, 115,  90,  90, 115,  35;                        1/96
   16,  53,  40,  46,  40,  53,  16;                   1/44
  131, 433, 330, 366, 366, 330, 433, 131;              1/360
  179, 592, 450, 504, 486, 504, 450, 592, 179;         1/492
  163, 539, 410, 458, 446, 446, 458, 410, 539, 163;    1/448
  ...
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.

Crossrefs

Cf. A321122 (Common denominators).
Cf. A093735/A093736 (Newton-Cotes formulas), A100640/A100641 (Cotesian numbers), A321118/A321119 (Holladay-Sard best quadrature formulas).

Programs

  • Mathematica
    s = -2 + Sqrt[3];
    e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n));
    f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n));
    w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]];
    a321122[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}]
    Join[{0, 1, 1, 1, 4, 1}, Table[FullSimplify[a321122[n]*w[n, k]], {n, 3, 12}, {k, 0, n}]] // Flatten
  • Maxima
    s : -2 + sqrt(3)$
    e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$
    f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$
    w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$
    a321122(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$
    append([0, 1, 1, 1, 4, 1], create_list(fullratsimp(a321122(n)*w(n, k)), n, 3, 12, k, 0, n));

Formula

T(n,k) = T(n,n-k).
T(0,0) = 0 and T(n,k) = A093735(n,k) for n = 1, 2, 3.
Let s = -2 + sqrt(3), and define e(n) = s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)), f(n,k) = 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)), and w(n,0) = 1/4 + e(n)/6, w(n,1) = 2 - (1 + 1/6)*e(n), w(n,k) = 1 + f(n,k)/4 for 2 <= k <= n - 2. Then T(n,k) = A321122(n)*w(n,k) for 0 <= k <= n, n >= 3.

A321120 Decimal expansion of (3 + sqrt(3))/12.

Original entry on oeis.org

3, 9, 4, 3, 3, 7, 5, 6, 7, 2, 9, 7, 4, 0, 6, 4, 4, 1, 1, 2, 7, 2, 8, 7, 1, 9, 5, 1, 2, 5, 4, 8, 9, 3, 6, 3, 9, 1, 1, 9, 0, 0, 4, 3, 7, 8, 1, 7, 5, 3, 1, 7, 1, 9, 0, 0, 4, 6, 5, 0, 5, 8, 1, 6, 2, 0, 9, 9, 4, 4, 1, 8, 0, 7, 5, 7, 3, 3, 3, 3, 6, 4, 2, 3, 4, 2, 8
Offset: 0

Views

Author

Keywords

Comments

The smallest weight in Holladay-Sard's quadrature formula for semi-infinite integrals.

Examples

			0.3943375672974064411272871951...
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967.

Crossrefs

Programs

  • Maple
    Digits := 1000; evalf((3 + sqrt(3))/12);
  • Mathematica
    RealDigits[(3 + Sqrt[3])/12, 10, 100][[1]]
  • PARI
    (3 + sqrt(3))/12

Formula

Equals lim_{n->infinity} A321118(0,n)/A321119(n).
Irrational number represented by the periodic continued fraction [0, 2, 1, 1; [6, 2]].
Largest real root of 1 - 12*x + 24*x^2.

A321122 a(n) = n-th row common denominator of A321121.

Original entry on oeis.org

4, 2, 3, 8, 36, 96, 44, 360, 492, 448, 1836, 5016, 2284, 18720, 25572, 23288, 95436, 260736, 118724, 973080, 1329252, 1210528, 4960836, 13553256, 6171364, 50581440, 69095532, 62924168, 257868036, 704508576, 320792204, 2629261800, 3591638412, 3270846208
Offset: 0

Views

Author

Keywords

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.

Crossrefs

Cf. A321121 (Numerators).

Programs

  • Mathematica
    s = -2 + Sqrt[3];
    e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n));
    f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n));
    w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]];
    a[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}];
    Join[{4, 3, 2}, Table[a[n], {n, 3, 50}]]
  • Maxima
    s : -2 + sqrt(3)$
    e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$
    f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$
    w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$
    a(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$
    append([4, 2, 3], makelist(a(n), n, 3, 50));

Formula

Let s = -2 + sqrt(3), and define e(n) = s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)), f(n,k) = 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)), and w(n,0) = 1/4 + e(n)/6, w(n,1) = 2 - (1 + 1/6)*e(n), w(n,k) = 1 + f(n,k)/4 for 2 <= k <= n - 2. Then a(n) = LCM of denominators of {w(n,k), 0 <= k <= n} for n >= 3.
a(n) = 52*a(n-6) - a(n-12) for n >= 15 (conjectured).
G.f.: (4 + 2*x + 3*x^2 + 8*x^3 + 36*x^4 + 96*x^5 - 164*x^6 + 256*x^7 + 336*x^8 + 32*x^9 - 36*x^10 + 24*x^11 + 2*x^13 - 9*x^14)/(1 - 52*x^6 + x^12) (conjectured).
Showing 1-4 of 4 results.