cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321156 Numbers that have exactly 5 representations as a k-gonal number, P(n,k) = n*((k-2)*n - (k-4))/2, k and n >= 3.

Original entry on oeis.org

561, 1485, 1701, 2016, 2556, 2601, 2850, 3025, 3060, 3256, 3321, 4186, 4761, 4851, 5226, 5320, 5565, 5841, 6175, 6216, 6336, 6525, 6670, 7425, 7821, 7840, 8001, 8100, 8625, 8646, 9730, 9856, 9945, 9976, 10116, 10296, 10450, 10585, 11025, 11305, 11340, 12025, 12090
Offset: 1

Views

Author

Hugh Erling, Oct 28 2018

Keywords

Comments

n | 2*m where m is a term in this sequence. - David A. Corneth, Oct 29 2018

Examples

			561 has representations P(3, 188)=P(6, 39)=P(11, 12)=P(17, 6)=P(33, 3).
1485 has representations P(3, 496)=P(5, 150)=P(9, 43)=P(15, 16)=P(54, 3).
1701 has representations P(3, 568)=P(6, 115)=P(9, 49)=P(18, 13)=P(21, 10).
		

Crossrefs

Programs

  • PARI
    isok(n) = sum(k=3, n-1, ispolygonal(n, k)) == 5; \\ Michel Marcus, Oct 29 2018
    
  • PARI
    is(n) = my(d=divisors(n<<1)); sum(i=2, #d, k=2*(d[i]^2 - 2 * d[i] + n) / (d[i] - 1) / d[i]; k == k\1 && min(d[i], k) >=3) == 5 \\ David A. Corneth, Oct 29 2018

A321157 Numbers that have exactly 7 representations as a k-gonal number, P(n,k) = n*((k-2)*n - (k-4))/2, k and n >= 3.

Original entry on oeis.org

11935, 12376, 21736, 24220, 41041, 45441, 51360, 52326, 53361, 54145, 54405, 58311, 58696, 73360, 82720, 89425, 90321, 96580, 101025, 102025, 108801, 113050, 117216, 118405, 122265, 122500, 122760, 123201, 123256, 127281, 128961, 135201, 144585, 152076, 165376, 166635, 169456, 174097
Offset: 1

Views

Author

Hugh Erling, Oct 29 2018

Keywords

Examples

			11935 has representations P(n,k) = P(5, 1195) = P(7, 570) = P(10, 267) = P(14, 133) = P(35, 22) = P(55, 10) = P(154, 3).
12376 has representations P(n,k) = P(4, 2064) = P(7, 591) = P(16, 105) = P(26, 40) = P(34, 24) = P(56, 10) = P(91, 5).
21736 has representations P(n,k) = P(4, 3624) = P(8, 778) = P(11, 397) = P(16, 183) = P(19, 129) = P(22, 96) = P(208, 3).
		

Crossrefs

A321158 Numbers that have exactly 8 representations as a k-gonal number, P(m,k) = m*((k-2)*m - (k-4))/2, k and m >= 3.

Original entry on oeis.org

11781, 61776, 75141, 133056, 152361, 156520, 176176, 179740, 188650, 210925, 241605, 266085, 292825, 298936, 338625, 342585, 354025, 358281, 360801, 365365, 371925, 391392, 395200, 400960, 417340, 419805, 424270, 438516
Offset: 1

Views

Author

Hugh Erling, Oct 29 2018

Keywords

Examples

			a(1) 11781 has representations P(m,k) = P(3, 3928)=P(6, 787)=P(9,329)=P(11, 216)=P(21, 58)=P(63, 8)=P(77, 6)=P(153, 3).
a(2) 61776 has representations P(m,k) = P(3, 20593)=P(6, 4120)=P(8,2208)=P(11, 1125)=P(26, 192)=P(36, 100)=P(176, 6)=P(351, 3).
a(3) 75141 has representations P(m,k) = P(3, 25048)=P(6, 5011)=P(9,2089)=P(11, 1368)=P(18, 493)=P(27, 216)=P(66, 37)=P(69, 34).
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Module[{k}, Sum[Boole[d >= 3 && (k = 2(d^2 - 2d + n)/(d^2 - d); IntegerQ[k] && k >= 3)], {d, Divisors[2n]}]];
    Select[Range[500000], r[#] == 8&] (* Jean-François Alcover, Sep 23 2019, after Andrew Howroyd *)
  • PARI
    r(n)={sumdiv(2*n, d, if(d>=3, my(k=2*(d^2 - 2*d + n)/(d^2 - d)); !frac(k) && k>=3))}
    for(n=1, 5*10^5, if(r(n)==8, print1(n, ", "))) \\ Andrew Howroyd, Nov 26 2018
  • Python
    # See link.
    

A321159 Numbers that have exactly 9 representations as a k-gonal number, P(n,k) = n*((k-2)*n - (k-4))/2, k and n >= 3.

Original entry on oeis.org

27405, 126225, 194481, 201825, 273105, 478401, 538461, 615681, 718641, 859600, 862785, 1056160, 1187145, 1257201, 1328481, 1413126, 1439361, 1532601, 1540540, 1619541, 1625625, 1708785, 1842400, 1849926, 1890945
Offset: 1

Views

Author

Hugh Erling, Oct 29 2018

Keywords

Examples

			a(1) 27405 has representations P(n,k) = P(3, 9136)=P(5, 2742)=P(9, 763)=P(14, 303)=P(18, 181)=P(27, 80)=P(35, 48)=P(63, 16)=P(105, 7).
a(2) 126225 has representations P(n,k) = P(3, 42076)=P(5, 12624)=P(9, 3508)=P(15, 1204)=P(17, 930)=P(33, 241)=P(50, 105)=P(99, 28)=P(225, 7).
a(3) 194481 has representations P(n,k) = P(3, 64828)=P(6, 12967)=P(9, 5404)=P(14, 2139)=P(18, 1273)=P(21, 928)=P(27, 556)=P(81, 62)=P(441, 4).
		

Crossrefs

Programs

  • PARI
    isok(n) = sum(k=3, n-1, ispolygonal(n, k)) == 9; \\ Michel Marcus, Nov 02 2018
  • Python
    # See Erling link.
    
Showing 1-4 of 4 results.