A321169 a(n) is the smallest prime p such that p + 2 is a product of n primes (counted with multiplicity).
3, 2, 43, 79, 241, 727, 3643, 15307, 19681, 164023, 1673053, 885733, 2657203, 18600433, 23914843, 100442347, 358722673, 645700813, 4519905703, 18983603959, 48427561123, 31381059607, 261508830073, 1307544150373, 3295011258943, 24006510600883, 12709329141643, 53379182394907, 190639937124673, 2615579937350539
Offset: 1
Keywords
Examples
a(1) = 3 as 3 + 2 = 5 (prime), a(2) = 2 as 2 + 2 = 4 = 2*2 (semiprime), a(3) = 43 as 43 + 2 = 45 = 3*3*5 (3-almost prime), a(4) = 79 as 79 + 2 = 81 = 3*3*3*3 (4-almost prime).
Links
- David A. Corneth, Table of n, a(n) for n = 1..801
Crossrefs
Programs
-
Mathematica
ptns[n_, 0] := If[n == 0, {{}}, {}]; ptns[n_, k_] := Module[{r}, If[n < k, Return[{}]]; ptns[n, k] = 1 + Union @@ Table[PadRight[#, k] & /@ ptns[n - k, r], {r, 0, k}]]; a[n_] := Module[{i, l, v}, v = Infinity; For[i = n, True, i++, l = (Times @@ Prime /@ # &) /@ ptns[i, n]; If[Min @@ l > v, Return[v]]; minp = Min @@ Select[l - 2, PrimeQ]; If[minp < v, v = minp]]] ; Array[a, 10] (* after Amarnath Murthy at A073919 *)
-
PARI
a(n) = forprime(p=2, , if (bigomega(p+2) == n, return (p))); \\ Michel Marcus, Jan 10 2019
-
PARI
a(n) = {my(p3 = 3^n, u, c); if(n <= 2, return(4 - n)); if(isprime(p3 - 2), return(p3 - 2)); forprime(p = 5, oo, if(isprime(p3 / 3 * p - 2), u = p3 / 3 * p - 2; break ) ); for(i = 2, n, if(p3 * (5/3)^i > u, return(u)); for(j = 1, oo, if(p3 * j \ 3^i > u, next(2)); if(bigomega(j) == i, if(isprime(p3 / 3^(i) * j - 2), u = p3 / 3^(i) * j - 2; next(2) ) ) ) ); return(u) } \\ David A. Corneth, Jan 11 2019
Comments