cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321425 Number of connected labeled almost cubic graphs on 2n nodes.

Original entry on oeis.org

0, 0, 6, 630, 232260, 167712300, 207994906350, 409639268108070, 1206311009131027800, 5069191623021896970600, 29288218834810895163954750, 225729928889064072869657010750, 2263331356064784471285438421502700, 28907890013735339531664032407056442500
Offset: 0

Views

Author

R. J. Mathar, Nov 09 2018

Keywords

Comments

Almost cubic graphs are cubic graphs (A002829) where 2 points have degree 2 and these 2 points are non-adjacent. All other points have degree 3. They are constructed by removing an edge from the cubic graphs.

Examples

			There is 1 unlabeled almost cubic graph on 4 nodes (the kite, obtained by removing an edge of the tetrahedron K_4). This has 6 = binomial(4,2) labeled versions obtained by selecting two out of 4 labels for the points of degree 2.
		

Crossrefs

Programs

  • Mathematica
    terms = 14; egf = HypergeometricPFQ[{1/6, 5/6}, {}, 12x/(x^2 + 8x + 4)^(3/2)] Exp[-Log[1/4 x^2 + 2x + 1]/4 - x/3 + (x^2 + 8x + 4)^(3/2)/(24 x) - 1/(3x) - x^2/24 - 1] + O[x]^terms;
    CoefficientList[egf, x](2 Range[0, terms-1])! 3 Range[0, terms-1] (* Jean-François Alcover, Nov 23 2018, from A002829 *)
  • PARI
    b(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); \\ A002829
    vector(20, n, n--; 3*n*b(n)) \\ Michel Marcus, Nov 10 2018

Formula

a(n) = 3*n*A002829(n). [Wormald eq. (2.1)]

Extensions

Terms a(11) and beyond from Andrew Howroyd, Nov 09 2018

A321427 Number of connected labeled closely cubic graphs on 2n+1 nodes.

Original entry on oeis.org

0, 0, 30, 5670, 2543940, 2147121900, 3060711804150, 6822508357214550, 22450423357516354200, 104310014134397398727400, 660475190873012530467201750, 5537072793132139084007288856750, 60005787711473418534665255077267500, 823803200874542135657355819087997282500
Offset: 0

Views

Author

R. J. Mathar, Nov 09 2018

Keywords

Comments

Closely cubic graphs are cubic graphs (A002829) where 1 point has degree 2. All other points have degree 3. They are constructed by removing a point from the fairly cubic graphs (A321426).

Crossrefs

Programs

  • Mathematica
    nmax = 13;
    b[n_] := Sum[Sum[Sum[((-1)^(i + j) (2n)! (2(3n - i - 2j - 3k))!)/(2^(5n - i - 2j - 4k) 3^(2n - i - 2j - k)(3n - i - 2j - 3k)! i! j! k! (2n - i - 2j - 2k)!), {j, 0, Min[Floor[(3n - i - 3k)/2], Floor[(2n - i - 2k)/2]]}], {k, 0, Min[Floor[(3n - i)/3], Floor[(2n - i)/2]]}], {i, 0, 2n}];
    seq[n_] := seq[n] = Module[{v = Table[0, {n + 1}]}, For[k = 2, k <= n, k++, v[[k + 1]] = 3k b[k] + 2k(2k - 1) v[[k]] + k(2k - 1)(2k - 2)(2k - 3)v[[k - 1]]]; v];
    a[n_] := (2n+1) seq[nmax][[n+1]];
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 23 2018, after Andrew Howroyd *)

Formula

a(n) = (2*n+1)*A321426(n). [Wormald eq. (2.2)]

Extensions

Terms a(10) and beyond from Andrew Howroyd, Nov 09 2018
Showing 1-2 of 2 results.