A321588 Number of connected nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows and columns.
1, 1, 1, 9, 29, 181, 1285, 10635, 102355, 1118021, 13637175, 184238115, 2727293893, 43920009785, 764389610843, 14297306352937, 286014489487815, 6093615729757841, 137750602009548533, 3293082026520294529, 83006675263513350581, 2200216851785981586729, 61180266502369886181253
Offset: 0
Keywords
Examples
The a(4) = 29 matrices: 4 31 13 . 3 21 21 20 12 12 11 110 11 110 101 101 1 10 10 02 011 011 01 01 1 10 01 11 10 01 20 101 02 011 110 011 3 21 12 11 110 101 21 12 . 11 11 10 10 01 01 10 01 11 01 11 10 01 10 01 11 10 11
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..40
Crossrefs
Programs
-
Mathematica
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}]; multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#],UnsameQ@@Transpose[prs2mat[#]],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,6}]
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q,t,wf)={prod(j=1, #q, wf(t*q[j]))-1} Q(m,n,wf=w->2)={my(s=0); forpart(p=m, s+=(-1)^#p*permcount(p)*exp(-sum(t=1, n, (-1)^t*x^t*K(p,t,wf)/t, O(x*x^n))) ); Vec((-1)^m*serchop(serlaplace(s),1), -n)} ConnectedMats(M)={my([m, n]=matsize(M), R=matrix(m, n)); for(m=1, m, for(n=1, n, R[m, n] = M[m, n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1, i-1)*binomial(n, j)*R[i, j]*M[m-i, n-j])))); R} seq(n)={my(R=vectorv(n,m,Q(m,n,w->1/(1 - y^w) + O(y*y^n)))); for(i=2, #R, R[i] -= i*R[i-1]); Vec(1 + vecsum( vecsum( Vec( ConnectedMats( Mat(R))))))} \\ Andrew Howroyd, Jan 24 2024
Extensions
a(7) onwards from Andrew Howroyd, Jan 24 2024
Comments