A321615 Triangle read by rows: T(n,k) is the number of k X k integer matrices with sum of elements n, with no zero rows or columns, up to row and column permutation.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 6, 3, 1, 0, 1, 9, 13, 3, 1, 0, 1, 17, 38, 20, 3, 1, 0, 1, 23, 97, 82, 23, 3, 1, 0, 1, 36, 217, 311, 126, 24, 3, 1, 0, 1, 46, 453, 968, 624, 151, 24, 3, 1, 0, 1, 65, 868, 2825, 2637, 933, 162, 24, 3, 1, 0, 1, 80, 1585, 7394, 10098, 4942, 1132, 165, 24, 3, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 1 2 1 0 1 6 3 1 0 1 9 13 3 1 0 1 17 38 20 3 1 0 1 23 97 82 23 3 1 0 1 36 217 311 126 24 3 1 0 1 46 453 968 624 151 24 3 1 0 1 65 868 2825 2637 933 162 24 3 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Programs
-
Mathematica
(* See A318795 for M[m, n, k]. *) T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n]; Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 24 2018, from PARI *)
-
PARI
\\ See A318795 for M. T(n, k) = if(k==0, n==0, M(k, k, n) - 2*M(k, k-1, n) + M(k-1, k-1, n));
-
PARI
\\ See A340652 for G. T(n)={[Vecrev(p) | p<-Vec(1 + sum(k=1, n, y^k*(polcoef(G(k, n, n, y), k, y) - polcoef(G(k-1, n, n, y), k, y))))]} { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024
Extensions
Column k=0 inserted by Andrew Howroyd, Jan 17 2024
Comments