A321616 Primes p = k^2 + (k-1)^2 such that k^p - (k-1)^p is prime.
5, 61, 113, 1741
Offset: 1
Examples
The prime 5 = 2^2 + 1^2 and 2^5 - 1^5 = 31 is prime. We have 61 = 6^2 + 5^2, 113 = 8^2 + 7^2, 1741 = 30^2 + 29^2.
Programs
-
Mathematica
f[k_]:=k^2 + (k-1)^2 ; seqQ[k_]:=Module[{p=f[k]}, PrimeQ[p] && PrimeQ[k^p - (k-1)^p ]]; f[Select[Range[30], seqQ]] (* Amiram Eldar, Nov 15 2018 *) pQ[k_]:=Module[{c=k^2+(k-1)^2},If[AllTrue[{c,k^c-(k-1)^c},PrimeQ],c,Nothing]]; Array[pQ,30] (* Harvey P. Dale, Aug 27 2023 *)
-
PARI
lista(nn) = {for (k=1, nn, if (isprime(p=k^2 + (k-1)^2) && isprime(k^p - (k-1)^p), print1(p, ", ")););} \\ Michel Marcus, Nov 18 2018
Comments