cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A087940 a(n) = Sum_{k=0..n} binomial(n+(-1)^k, k).

Original entry on oeis.org

1, 5, 9, 20, 39, 80, 159, 320, 639, 1280, 2559, 5120, 10239, 20480, 40959, 81920, 163839, 327680, 655359, 1310720, 2621439, 5242880, 10485759, 20971520, 41943039, 83886080, 167772159, 335544320, 671088639, 1342177280, 2684354559, 5368709120, 10737418239
Offset: 1

Views

Author

Benoit Cloitre, Oct 27 2003

Keywords

Crossrefs

Cf. A321643 (first differences).

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{2,1,-2},{5,9,20},40]] (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    a(n) = sum(k=0,n,binomial(n+(-1)^k,k)); \\ Michel Marcus, Dec 06 2013

Formula

For n>1 a(n) = 5*2^(n-2)-(1-(-1)^n)/2.
From Colin Barker, Jun 26 2013: (Start)
For n>4 a(n) = 2*a(n-1)+a(n-2)-2*a(n-3).
G.f.: -x*(x^3+2*x^2-3*x-1) / ((x-1)*(x+1)*(2*x-1)). (End)

Extensions

Two more terms from Michel Marcus, Dec 06 2013
Showing 1-1 of 1 results.