cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A322474 Primes that are not base-10 deletable primes (written in base 10).

Original entry on oeis.org

11, 19, 41, 61, 89, 101, 109, 149, 151, 181, 191, 199, 211, 227, 241, 251, 257, 277, 281, 349, 389, 401, 409, 419, 421, 449, 461, 491, 499, 521, 541, 557, 577, 587, 601, 619, 641, 661, 691, 727, 757, 787, 809, 811, 821, 827, 857, 877, 881, 887, 911, 919, 941, 991, 1009, 1019, 1021, 1049, 1051, 1061
Offset: 1

Views

Author

Robert Price, Dec 09 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. Thus 2003 is in this sequence but not in A081027.
Complement of all nonprimes and A305352.

Crossrefs

Programs

  • Mathematica
    b = 10; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
    c = IntegerDigits[p[[i]], b];
    If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
    For[j = 1, j <= Length[c], j++,
    t = Delete[c, j];
    If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 09 2018 *)

A321658 Primes that are not base-4 deletable primes (written in base 10).

Original entry on oeis.org

5, 17, 37, 41, 73, 89, 97, 101, 131, 137, 149, 193, 199, 233, 257, 277, 281, 293, 313, 337, 347, 349, 353, 367, 373, 379, 389, 401, 409, 421, 521, 569, 577, 593, 601, 613, 617, 641, 661, 673, 677, 683, 761, 769, 809, 811, 823, 829, 853, 857, 859, 929, 937
Offset: 1

Views

Author

Robert Price, Nov 15 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
Complement of all primes and A319596.

Crossrefs

Programs

  • Mathematica
    b = 4; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
      c = IntegerDigits[p[[i]], b];
      If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
      For[j = 1, j <= Length[c], j++,
       t = Delete[c, j];
       If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 06 2018 *)

A321701 Primes that are not base-5 deletable primes (written in base 10).

Original entry on oeis.org

5, 29, 31, 41, 43, 83, 101, 109, 127, 131, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 199, 211, 223, 229, 233, 241, 251, 257, 277, 281, 283, 293, 313, 331, 349, 383, 401, 409, 419, 421, 431, 433, 443, 457, 461, 463, 467, 491, 499, 509, 521, 541, 577, 587, 593, 599
Offset: 1

Views

Author

Robert Price, Nov 17 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
Complement of all primes and A321700.

Crossrefs

Programs

  • Mathematica
    b = 5; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
      c = IntegerDigits[p[[i]], b];
      If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
      For[j = 1, j <= Length[c], j++,
       t = Delete[c, j];
       If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 06 2018 *)

A322172 Primes that are not base-7 deletable primes (written in base 10).

Original entry on oeis.org

7, 11, 13, 29, 43, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 151, 157, 173, 179, 181, 193, 197, 211, 229, 239, 257, 269, 271, 277, 281, 283, 307, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499
Offset: 1

Views

Author

Robert Price, Nov 29 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
Complement of all primes and A321910.

Crossrefs

Programs

  • Mathematica
    b = 7; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
      c = IntegerDigits[p[[i]], b];
      If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
      For[j = 1, j <= Length[c], j++,
       t = Delete[c, j];
       If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 06 2018 *)

A322174 Primes that are not base-6 deletable primes (written in base 10).

Original entry on oeis.org

7, 37, 43, 61, 151, 223, 229, 241, 271, 277, 307, 331, 337, 349, 367, 523, 691, 709, 733, 863, 907, 1009, 1033, 1051, 1069, 1103, 1109, 1123, 1223, 1231, 1249, 1283, 1289, 1297, 1301, 1303, 1321, 1327, 1381, 1423, 1429, 1447, 1471, 1483, 1531, 1549, 1567, 1597, 1621, 1627, 1657, 1663, 1741
Offset: 1

Views

Author

Robert Price, Nov 29 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
Complement of all primes and A322173.

Crossrefs

Programs

  • Mathematica
    b = 6; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
      c = IntegerDigits[p[[i]], b];
      If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
      For[j = 1, j <= Length[c], j++,
       t = Delete[c, j];
       If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 06 2018 *)

A322444 Primes that are not base-8 deletable primes (written in base 10).

Original entry on oeis.org

71, 73, 79, 97, 103, 113, 127, 149, 173, 193, 227, 241, 257, 263, 271, 281, 283, 307, 311, 313, 409, 419, 433, 439, 449, 457, 463, 487, 503, 521, 569, 577, 587, 593, 599, 607, 617, 631, 641, 647, 653, 661, 673, 701, 727, 733, 739, 743, 757, 769, 823, 827, 839, 881, 887, 907, 911, 919, 929
Offset: 1

Views

Author

Robert Price, Dec 08 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
Complement of all primes and A322443 .

Crossrefs

Programs

  • Mathematica
    b = 8; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
    c = IntegerDigits[p[[i]], b];
    If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
    For[j = 1, j <= Length[c], j++,
    t = Delete[c, j];
    If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 08 2018 *)

A322472 Primes that are not base-9 deletable primes (written in base 10).

Original entry on oeis.org

13, 17, 37, 73, 89, 97, 109, 113, 127, 131, 139, 149, 151, 157, 197, 227, 251, 257, 271, 277, 293, 307, 311, 313, 337, 359, 379, 397, 409, 419, 421, 433, 439, 457, 463, 487, 499, 503, 521, 523, 541, 569, 577, 587, 599, 601, 613, 617, 619, 631, 653, 661, 683, 733, 739, 743, 757, 761
Offset: 1

Views

Author

Robert Price, Dec 09 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
Complement of all primes and A322471.

Crossrefs

Programs

  • Mathematica
    b = 9; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
    c = IntegerDigits[p[[i]], b];
    If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
    For[j = 1, j <= Length[c], j++,
    t = Delete[c, j];
    If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 09 2018 *)

A322476 Primes that are not base-11 deletable primes (written in base 10).

Original entry on oeis.org

11, 17, 19, 53, 67, 89, 97, 103, 107, 109, 127, 131, 137, 139, 157, 163, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 239, 241, 269, 277, 281, 307, 311, 379, 383, 397, 401, 419, 421, 431, 443, 449, 463, 467, 491, 499, 503, 541, 547, 569, 571, 577, 587, 593, 599, 601, 607, 613
Offset: 1

Views

Author

Robert Price, Dec 09 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
Complement of all primes and A322475.

Crossrefs

Programs

  • Mathematica
    b = 11; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
    c = IntegerDigits[p[[i]], b];
    If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
    For[j = 1, j <= Length[c], j++,
    t = Delete[c, j];
    If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 09 2018 *)

A322478 Primes that are not base-12 deletable primes (written in base 10).

Original entry on oeis.org

13, 73, 97, 109, 157, 193, 241, 313, 337, 397, 409, 421, 431, 577, 601, 631, 661, 673, 691, 797, 877, 929, 937, 941, 1009, 1019, 1021, 1033, 1063, 1093, 1103, 1117, 1123, 1129, 1151, 1153, 1201, 1249, 1297, 1303, 1307, 1321, 1381, 1429, 1439, 1453, 1489, 1549, 1597, 1609, 1619, 1657, 1693, 1741
Offset: 1

Views

Author

Robert Price, Dec 09 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
Complement of all primes and A322477.

Crossrefs

Programs

  • Mathematica
    b = 12; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
    c = IntegerDigits[p[[i]], b];
    If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
    For[j = 1, j <= Length[c], j++,
    t = Delete[c, j];
    If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 09 2018 *)
Showing 1-9 of 9 results.