A321664 A sequence consisting of three disjoint copies of the Fibonacci sequence, one shifted, with the property that for any four consecutive terms the maximum term is the sum of the two minimum terms.
0, 1, 1, 1, 2, 1, 2, 3, 2, 4, 5, 3, 7, 8, 5, 12, 13, 8, 20, 21, 13, 33, 34, 21, 54, 55, 34, 88, 89, 55, 143, 144, 89, 232, 233, 144, 376, 377, 233, 609, 610, 377, 986, 987, 610, 1596, 1597, 987, 2583, 2584, 1597, 4180, 4181, 2584, 6764, 6765, 4181, 10945
Offset: 0
Keywords
Examples
For n=13, as n is 1 (mod 3), we find a(3*4+1) is the 4+2=6th Fibonacci number which is 8.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- David Nacin, Van der Laan Sequences and a Conjecture on Padovan Numbers, J. Int. Seq., Vol. 26 (2023), Article 23.1.2.
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,0,0,0,-1).
Crossrefs
Exhibits a property shared with multiples of A000931.
Programs
-
Magma
m:=70; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((x+x^2+x^3-x^5-x^7)/(1-2*x^3+x^9))); // Vincenzo Librandi, Nov 29 2018 -
Maple
seq(coeff(series(((x^4+x^3+x^2+x+1)/(1-x^3-x^6))-(1/(1-x^3)),x,n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Nov 29 2018
-
Mathematica
CoefficientList[Series[(x+x^2+x^3-x^5-x^7)/(1-2x^3+x^9), {x, 0, 20}], x] (* or *) LinearRecurrence[{0,0,2,0,0,0,0,0,-1}, {0,1,1,1,2,1,2,3,2}, 50] (* G. C. Greubel, Dec 04 2018 *)
-
PARI
my(x='x+O('x^70)); Vec((x+x^2+x^3-x^5-x^7)/(1-2*x^3+x^9)) \\ G. C. Greubel, Dec 04 2018
-
Python
def a(n): if n<6: return [0,1,1,1,2,1][n] return a(n-3)+a(n-6)+[1,0,0][n%3]
-
Racket
(define (f x) (cond [(< x 6) (list-ref (list 0 1 1 1 2 1) x)] [else (+ (f (- x 3)) (f (- x 6)) (list-ref (list 1 0 0) (remainder x 3)))]))
-
Sage
s=((x+x^2+x^3-x^5-x^7)/(1-2*x^3+x^9)).series(x, 70); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 04 2018
Formula
G.f.: (1 + x + x^2 + x^3 + x^4)/(1 - x^3 - x^6) - 1/(1 - x^3).
G.f.: (x + x^2 + x^3 - x^5 - x^7)/(1 - 2*x^3 + x^9).
a(n) = 2*a(n-3) - a(n-9). - G. C. Greubel, Dec 04 2018
Comments