cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321712 Number of partitions of a 2n-set into colored blocks, such that exactly n colors are used and the colors are introduced in increasing order.

Original entry on oeis.org

1, 2, 32, 945, 40992, 2350950, 167829629, 14342726398, 1427875921472, 162295947266310, 20738354463124740, 2942918038945276392, 459208250931426639151, 78145305037982571857910, 14403186440935002502579620, 2858375634375573872689073400, 607685050482829924986457079520
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m, k) option remember; `if`(n=0, 1, add(
          b(n-1, max(j, m), k)*`if`(j>m, k, 1) , j=1..m+1))
        end:
    a:= n-> add(b(2*n, 0, n-i)*(-1)^i*binomial(n, i), i=0..n)/n!:
    seq(a(n), n=0..15);
  • Mathematica
    b[n_, m_, k_] := b[n, m, k] = If[n == 0, 1, Sum[b[n - 1, Max[j, m], k] If[j > m, k, 1] , {j, 1, m + 1}]];
    a[n_] := Sum[b[2n, 0, n - i] (-1)^i Binomial[n, i], {i, 0, n}]/n!;
    a /@ Range[0, 15] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
    Table[Sum[StirlingS2[2*n, k] * StirlingS2[k, n], {k, n, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 17 2021 *)

Formula

a(n) = Sum_{i=n..2*n} Stirling2(2*n,i)*Stirling2(i,n).
a(n) = A039810(2n,n) = A130191(2n,n).
a(n) = ((2*n)!/n!) * [x^(2*n)] (exp(exp(x) - 1) - 1)^n. - Ilya Gutkovskiy, Feb 15 2021
From Vaclav Kotesovec, Feb 17 2021: (Start)
a(n) ~ c * d^n * (n-1)!, where
d = -4/(p^2*q*(1 + q + r)) = 14.158467948361614323478778011058425244554144983745335637776404207122781371002...
p = LambertW(-2/((1+r)*exp(2/(1+r))))
q = LambertW(-(1+r)/exp(1+r))
r = 0.49039351286814033601311908705923238442641817550970055325385921966197159992...
is the root of the equation p*(1+r)*(1+q+r) + (2 + p + p*r) = 0
and c = 0.1809999195056310772963776575864895285358912769365095026676184958683437... (End)