cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321716 Triangle read by rows: T(n,k) is the number of n X k Young tableaux, where 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 5, 42, 1, 1, 14, 462, 24024, 1, 1, 42, 6006, 1662804, 701149020, 1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960, 1, 1, 429, 1385670, 13672405890, 278607172289160, 9490348077234178440, 475073684264389879228560
Offset: 0

Views

Author

Seiichi Manyama, Nov 17 2018

Keywords

Examples

			T(4,3) = 12! / ((6*5*4)*(5*4*3)*(4*3*2)*(3*2*1)) = 462.
Triangle begins:
  1;
  1, 1;
  1, 1,   2;
  1, 1,   5,    42;
  1, 1,  14,   462,     24024;
  1, 1,  42,  6006,   1662804,    701149020;
  1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960;
		

Crossrefs

Programs

  • Magma
    A321716:= func< n,k | n eq 0 select 1 else Factorial(n*k)/(&*[ Round(Gamma(j+k)/Gamma(j)): j in [1..n]]) >;
    [A321716(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 04 2021
    
  • Mathematica
    T[n_, k_]:= (n*k)!/Product[Product[i+j-1, {j,1,k}], {i,1,n}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 17 2018 *)
    T[n_, k_]:= (n*k)!*BarnesG[n+1]*BarnesG[k+1]/BarnesG[n+k+1];
    Table[T[n, k], {n, 0, 5}, {k, 0, n}] //Flatten (* G. C. Greubel, May 04 2021 *)
  • Sage
    def A321716(n,k): return factorial(n*k)/product( gamma(j+k)/gamma(j) for j in (1..n) )
    flatten([[A321716(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 04 2021

Formula

T(n, k) = (n*k)! / (Product_{i=1..n} Product_{j=1..k} (i+j-1)).
T(n, k) = A060854(n,k) for n,k > 0.
T(n, n) = A039622(n).
T(n, k) = (n*k)!*BarnesG(n+1)*BarnesG(k+1)/BarnesG(n+k+1), where BarnesG(n) = A000178. - G. C. Greubel, May 04 2021