A321719
Number of non-normal semi-magic squares with sum of entries equal to n.
Original entry on oeis.org
1, 1, 3, 7, 28, 121, 746, 5041, 40608, 362936, 3635017, 39916801, 479206146, 6227020801, 87187426839, 1307674521272, 20923334906117, 355687428096001, 6402415241245577, 121645100408832001, 2432905938909013343, 51090942176372298027, 1124001180562929946213
Offset: 0
The a(3) = 7 semi-magic squares:
[3]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]
a(6) corrected and a(8)-a(15) added by
Chai Wah Wu, Jan 14 2019
A321717
Number of non-normal (0,1) semi-magic rectangles with sum of all entries equal to n.
Original entry on oeis.org
1, 1, 4, 8, 39, 122, 950, 5042, 45594, 366243, 3858148, 39916802, 494852628, 6227020802, 88543569808, 1308012219556, 21086562956045, 355687428096002, 6427672041650478, 121645100408832002, 2437655776358606198, 51091307191310604724, 1125098543553717372868, 25852016738884976640002, 620752122372339473623314, 15511210044577707470250243
Offset: 0
The a(3) = 8 semi-magic rectangles:
[1 1 1]
.
[1] [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[1] [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[1] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A321720
Number of non-normal (0,1) semi-magic squares with sum of entries equal to n.
Original entry on oeis.org
1, 1, 2, 6, 25, 120, 726, 5040, 40410, 362881, 3630840, 39916800, 479069574, 6227020800, 87181402140, 1307674370040, 20922977418841, 355687428096000, 6402388104196400, 121645100408832000, 2432903379962038320, 51090942171778378800, 1124000886592995642000, 25852016738884976640000
Offset: 0
Cf.
A006052,
A007016,
A057151,
A068313,
A008300,
A101370,
A104602,
A120732,
A271103,
A319056,
A319616.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Union[Last/@#]==Range[Max@@First/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A321735
Number of (0,1)-matrices with sum of entries equal to n, no zero rows or columns, weakly decreasing row and column sums, and the same row sums as column sums.
Original entry on oeis.org
1, 1, 2, 7, 30, 153, 939, 6653, 53743, 486576
Offset: 0
The a(3) = 7 matrices:
[1 1]
[1 0]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Cf.
A000700,
A007016,
A049311,
A054976,
A057151,
A104602,
A320451,
A321719,
A321723,
A321732,
A321733,
A321736,
A321739.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A321739
Number of non-isomorphic weight-n set multipartitions (multisets of sets) whose part-sizes are also their vertex-degrees.
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 12, 21, 46, 94, 208
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(6) = 12 set multipartitions:
{1} {1}{2} {2}{12} {12}{12} {1}{23}{23} {12}{13}{23}
{1}{2}{3} {1}{1}{23} {2}{13}{23} {3}{23}{123}
{1}{3}{23} {3}{3}{123} {1}{1}{1}{234}
{1}{2}{3}{4} {1}{2}{2}{34} {1}{1}{24}{34}
{1}{2}{4}{34} {1}{2}{34}{34}
{1}{2}{3}{4}{5} {1}{3}{24}{34}
{1}{4}{4}{234}
{2}{4}{12}{34}
{3}{4}{12}{34}
{1}{2}{3}{3}{45}
{1}{2}{3}{5}{45}
{1}{2}{3}{4}{5}{6}
Cf.
A000700,
A049311,
A057151,
A104602,
A319056,
A320451,
A321719,
A321721,
A321723,
A321732,
A321734,
A321735,
A321736,
A321854.
A321733
Number of (0,1)-matrices with n ones, no zero rows or columns, and the same row sums as column sums.
Original entry on oeis.org
1, 1, 2, 8, 40, 246, 1816, 15630, 153592, 1696760, 20816358, 280807868, 4131117440, 65823490088, 1129256780408
Offset: 0
The a(4) = 40 matrices:
[1 1]
[1 1]
.
[1 1 0][1 1 0][1 0 1][1 0 1][1 0 0]
[1 0 0][0 0 1][1 0 0][0 1 0][0 1 1]
[0 0 1][1 0 0][0 1 0][1 0 0][0 1 0]
.
[1 0 0][0 1 1][0 1 0][0 1 0][0 1 0]
[0 0 1][1 0 0][1 1 0][1 0 1][0 1 1]
[0 1 1][1 0 0][0 0 1][0 1 0][1 0 0]
.
[0 1 0][0 0 1][0 0 1][0 0 1][0 0 1]
[0 0 1][1 1 0][1 0 0][0 1 0][0 0 1]
[1 0 1][0 1 0][0 1 1][1 0 1][1 1 0]
.
[1 0 0 0][1 0 0 0][1 0 0 0][1 0 0 0][1 0 0 0][1 0 0 0]
[0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
[0 0 1 0][0 0 0 1][0 1 0 0][0 0 0 1][0 1 0 0][0 0 1 0]
[0 0 0 1][0 0 1 0][0 0 0 1][0 1 0 0][0 0 1 0][0 1 0 0]
.
[0 1 0 0][0 1 0 0][0 1 0 0][0 1 0 0][0 1 0 0][0 1 0 0]
[1 0 0 0][1 0 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
[0 0 1 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 0 1 0]
[0 0 0 1][0 0 1 0][0 0 0 1][1 0 0 0][0 0 1 0][1 0 0 0]
.
[0 0 1 0][0 0 1 0][0 0 1 0][0 0 1 0][0 0 1 0][0 0 1 0]
[1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 0 1][0 0 0 1]
[0 1 0 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 1 0 0]
[0 0 0 1][0 1 0 0][0 0 0 1][1 0 0 0][0 1 0 0][1 0 0 0]
.
[0 0 0 1][0 0 0 1][0 0 0 1][0 0 0 1][0 0 0 1][0 0 0 1]
[1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0]
[0 1 0 0][0 0 1 0][1 0 0 0][0 0 1 0][1 0 0 0][0 1 0 0]
[0 0 1 0][0 1 0 0][0 0 1 0][1 0 0 0][0 1 0 0][1 0 0 0]
Cf.
A006052,
A007016,
A049311,
A054976,
A057151,
A104602,
A120732,
A319056,
A321717,
A321723,
A321732,
A321735,
A321736,
A321739.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
Showing 1-6 of 6 results.
Comments