cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A321719 Number of non-normal semi-magic squares with sum of entries equal to n.

Original entry on oeis.org

1, 1, 3, 7, 28, 121, 746, 5041, 40608, 362936, 3635017, 39916801, 479206146, 6227020801, 87187426839, 1307674521272, 20923334906117, 355687428096001, 6402415241245577, 121645100408832001, 2432905938909013343, 51090942176372298027, 1124001180562929946213
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal semi-magic square is a nonnegative integer matrix with row sums and column sums all equal to d, for some d|n.
Squares must be of size k X k where k is a divisor of n. This implies that a(p) = p! + 1 for p prime since the only allowable squares are of sizes 1 X 1 and p X p. The 1 X 1 square is [p], the p X p squares are necessarily permutation matrices and there are p! permutation matrices of size p X p. Also, a(n) >= n! + 1 for n > 1. - Chai Wah Wu, Jan 13 2019

Examples

			The a(3) = 7 semi-magic squares:
  [3]
.
  [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]

Formula

a(p) = p! + 1 for p prime and a(n) >= n! + 1 for n > 1 (see comment above). - Chai Wah Wu, Jan 13 2019
a(n) = Sum_{d|n} A257493(d, n/d) for n > 0. - Andrew Howroyd, Apr 11 2020

Extensions

a(7) from Chai Wah Wu, Jan 13 2019
a(6) corrected and a(8)-a(15) added by Chai Wah Wu, Jan 14 2019
a(16)-a(19) from Chai Wah Wu, Jan 16 2019
Terms a(20) and beyond from Andrew Howroyd, Apr 11 2020

A321717 Number of non-normal (0,1) semi-magic rectangles with sum of all entries equal to n.

Original entry on oeis.org

1, 1, 4, 8, 39, 122, 950, 5042, 45594, 366243, 3858148, 39916802, 494852628, 6227020802, 88543569808, 1308012219556, 21086562956045, 355687428096002, 6427672041650478, 121645100408832002, 2437655776358606198, 51091307191310604724, 1125098543553717372868, 25852016738884976640002, 620752122372339473623314, 15511210044577707470250243
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal semi-magic rectangle is a nonnegative integer matrix with row sums and column sums all equal to d, for some d|n.
Rectangles must be of size k X m where k and m are divisors of n and k*m >= n. This implies that a(p) = p! + 2 for p prime since the only allowable rectangles are of sizes 1 X 1, 1 X p, p X 1 and p X p. There are no 1 X 1 rectangle that satisfies the condition. The 1 X p and p X 1 rectangles are [1....1] and its transpose, the p X p rectangle are necessarily permutation matrices and there are p! permutation matrices of size p X p. It also shows that a(n) >= n! + 2 for n > 1. - Chai Wah Wu, Jan 13 2019

Examples

			The a(3) = 8 semi-magic rectangles:
  [1 1 1]
.
  [1] [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [1] [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [1] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]

Formula

a(p) = p! + 2 for p prime. a(n) >= n! + 2 for n > 1. - Chai Wah Wu, Jan 13 2019

Extensions

a(7) from Chai Wah Wu, Jan 13 2019
a(8)-a(13) from Chai Wah Wu, Jan 14 2019
a(14)-a(15) from Chai Wah Wu, Jan 15 2019
a(16)-a(19) from Chai Wah Wu, Jan 16 2019
Terms a(20) onward from Max Alekseyev, Dec 04 2024

A321718 Number of coupled non-normal semi-magic rectangles with sum of entries equal to n.

Original entry on oeis.org

1, 1, 5, 9, 44, 123, 986, 5043, 45832, 366300, 3862429, 39916803, 495023832, 6227020803, 88549595295, 1308012377572, 21086922542349, 355687428096003, 6427700493998229, 121645100408832003, 2437658338007783347, 51091307195905020227, 1125098837523651728389, 25852016738884976640003, 620752163206546966698620, 15511210044577707492319496
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A coupled non-normal semi-magic rectangle is a nonnegative integer matrix with equal row sums and equal column sums. The common row sum may be different from the common column sum.
Rectangles must be of size k X m where k and m are divisors of n. This implies that a(p) = p! + 3 for p prime since the only allowable rectangles are of sizes 1 X 1, 1 X p, p X 1 and p X p. The 1 X 1 square is [p], the 1 X p and p X 1 rectangles are [1,...,1] and its transpose and the p X p squares are necessarily permutation matrices and there are p! permutation matrices of size p X p. Also, a(n) >= n! + 3 for n > 1. - Chai Wah Wu, Jan 15 2019

Examples

			The a(3) = 9 coupled semi-magic rectangles:
  [3] [1 1 1]
.
  [1] [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [1] [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [1] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]

Formula

a(p) = p! + 3 for p prime. a(n) >= n! + 3 for n > 1. - Chai Wah Wu, Jan 15 2019

Extensions

a(7)-a(15) from Chai Wah Wu, Jan 15 2019
a(16)-a(19) from Chai Wah Wu, Jan 16 2019
Terms a(20) onward from Max Alekseyev, Dec 04 2024

A321721 Number of non-isomorphic non-normal semi-magic square multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 7, 2, 10, 7, 12, 2, 38, 2, 21, 46, 72, 2, 162, 2, 420, 415, 64, 2, 4987, 1858, 110, 9336, 45456, 2, 136018, 2, 1014658, 406578, 308, 3996977, 34937078, 2, 502, 28010167, 1530292965, 2, 508164038, 2, 54902992348, 51712929897, 1269, 2, 3217847072904, 8597641914, 9168720349613
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal semi-magic square multiset partition of weight n is a multiset partition of weight n whose part sizes and vertex degrees are all equal to d, for some d|n.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of nonnegative integer square matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, with row sums and column sums all equal to d, for some d|n.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(6) = 7 multiset partitions:
  {{11}}   {{111}}     {{1111}}       {{11111}}         {{111111}}
  {{1}{2}} {{1}{2}{3}} {{11}{22}}     {{1}{2}{3}{4}{5}} {{111}{222}}
                       {{12}{12}}                       {{112}{122}}
                       {{1}{2}{3}{4}}                   {{11}{22}{33}}
                                                        {{11}{23}{23}}
                                                        {{12}{13}{23}}
                                                        {{1}{2}{3}{4}{5}{6}}
Inequivalent representatives of the a(6) = 7 matrices:
  [6]
.
  [3 0] [2 1]
  [0 3] [1 2]
.
  [2 0 0] [2 0 0] [1 1 0]
  [0 2 0] [0 1 1] [1 0 1]
  [0 0 2] [0 1 1] [0 1 1]
.
  [1 0 0 0 0 0]
  [0 1 0 0 0 0]
  [0 0 1 0 0 0]
  [0 0 0 1 0 0]
  [0 0 0 0 1 0]
  [0 0 0 0 0 1]
Inequivalent representatives of the a(9) = 7 matrices:
  [9]
.
  [3 0 0] [3 0 0] [2 1 0] [2 1 0] [1 1 1]
  [0 3 0] [0 2 1] [1 1 1] [1 0 2] [1 1 1]
  [0 0 3] [0 1 2] [0 1 2] [0 2 1] [1 1 1]
.
  [1 0 0 0 0 0 0 0 0]
  [0 1 0 0 0 0 0 0 0]
  [0 0 1 0 0 0 0 0 0]
  [0 0 0 1 0 0 0 0 0]
  [0 0 0 0 1 0 0 0 0]
  [0 0 0 0 0 1 0 0 0]
  [0 0 0 0 0 0 1 0 0]
  [0 0 0 0 0 0 0 1 0]
  [0 0 0 0 0 0 0 0 1]
		

Crossrefs

Formula

a(p) = 2 for p prime corresponding to the 1 X 1 square [p] and the permutation matrices of size p X p with partition (1...10...0). - Chai Wah Wu, Jan 16 2019
a(n) = Sum_{d|n} A333733(d,n/d) for n > 0. - Andrew Howroyd, Apr 11 2020

Extensions

a(11)-a(13) from Chai Wah Wu, Jan 16 2019
a(14)-a(15) from Chai Wah Wu, Jan 20 2019
Terms a(16) and beyond from Andrew Howroyd, Apr 11 2020

A321736 Number of non-isomorphic weight-n multiset partitions whose part-sizes are also their vertex-degrees.

Original entry on oeis.org

1, 1, 2, 4, 9, 17, 42, 92, 231, 579, 1577
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

Also the number of nonnegative integer square matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, with the same multiset of row sums as of column sums.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 17 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1},{2}}  {{1},{2,2}}    {{1,1},{2,2}}      {{1,1},{1,2,2}}
                    {{2},{1,2}}    {{1,2},{1,2}}      {{1,1},{2,2,2}}
                    {{1},{2},{3}}  {{1},{2,2,2}}      {{1,2},{1,2,2}}
                                   {{2},{1,2,2}}      {{1},{2,2,2,2}}
                                   {{1},{1},{2,3}}    {{2},{1,2,2,2}}
                                   {{1},{2},{3,3}}    {{1},{2,2},{3,3}}
                                   {{1},{3},{2,3}}    {{1},{2,3},{2,3}}
                                   {{1},{2},{3},{4}}  {{1},{2},{3,3,3}}
                                                      {{1},{3},{2,3,3}}
                                                      {{2},{1,2},{3,3}}
                                                      {{2},{1,3},{2,3}}
                                                      {{3},{3},{1,2,3}}
                                                      {{1},{2},{2},{3,4}}
                                                      {{1},{2},{3},{4,4}}
                                                      {{1},{2},{4},{3,4}}
                                                      {{1},{2},{3},{4},{5}}
		

Crossrefs

A321725 Irregular triangle read by rows where T(n,k) is the number of d X d non-normal semi-magic squares with d = A027750(n,k) and sum of all entries equal to n.

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 3, 24, 1, 120, 1, 4, 21, 720, 1, 5040, 1, 5, 282, 40320, 1, 55, 362880, 1, 6, 6210, 3628800, 1, 39916800, 1, 7, 120, 2008, 202410, 479001600, 1, 6227020800, 1, 8, 9135630, 87178291200, 1, 231, 153040, 1307674368000, 1, 9, 10147
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal semi-magic square is a nonnegative integer square matrix with all row sums and column sums equal to d, for some d|n.

Examples

			Triangle begins:
   1
   1   2
   1   6
   1   3  24
   1 120
   1   4  21 720
The T(6,2) = 4 semi-magic squares (zeros not shown):
  [3  ] [2 1] [1 2] [  3]
  [  3] [1 2] [2 1] [3  ]
The T(6,3) = 21 semi-magic squares (zeros not shown):
  [2    ] [2    ] [2    ] [1 1  ] [1 1  ] [1 1  ] [1 1  ]
  [  2  ] [  1 1] [    2] [1 1  ] [1   1] [  1 1] [    2]
  [    2] [  1 1] [  2  ] [    2] [  1 1] [1   1] [1 1  ]
.
  [1   1] [1   1] [1   1] [1   1] [  2  ] [  2  ] [  2  ]
  [1 1  ] [1   1] [  2  ] [  1 1] [2    ] [1   1] [    2]
  [  1 1] [  2  ] [1   1] [1 1  ] [    2] [1   1] [2    ]
.
  [  1 1] [  1 1] [  1 1] [  1 1] [    2] [    2] [    2]
  [2    ] [1 1  ] [1   1] [  1 1] [2    ] [1 1  ] [  2  ]
  [  1 1] [1   1] [1 1  ] [2    ] [  2  ] [1 1  ] [2    ]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[k]==Union[Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5},{k,Divisors[n]}]

Formula

T(n, A000005(n)) = n!. Sum_k T(n,k) = A321719(n). - Chai Wah Wu, Jan 15 2019

Extensions

a(15)-a(48) from Chai Wah Wu, Jan 15 2019
Edited by Peter Munn, Mar 05 2025
Showing 1-6 of 6 results.