cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321795 Numbers m such that m^2+1 is prime with (m-1)^2+1 and (m+1)^2+1 semiprimes.

Original entry on oeis.org

4, 10, 170, 570, 780, 950, 1420, 2380, 2730, 3850, 4120, 4300, 5850, 6360, 6460, 6800, 6970, 7100, 7240, 8720, 9630, 10150, 10580, 11010, 11170, 11830, 12300, 14290, 16330, 17670, 17810, 17850, 17860, 18940, 19030, 20500, 21930, 23960, 24490, 25830, 26050
Offset: 1

Views

Author

Michel Lagneau, Nov 19 2018

Keywords

Comments

Subsequence of A005574.
For n>1, a(n) == 0 (mod 10).
The corresponding pairs of semiprimes ((m-1)^2+1, (m+1)^2+1) are of the form (2p, 2q) with p, q primes == 1 (mod 10). So, a(n) = (q - p)/2 and a(n)^2 + 1 = p + q - 1.

Examples

			10 is in the sequence because 10^2 + 1 = 101 is prime, and 9^2 + 1 = 2*41, 11^2 + 1 = 2*61 are semiprimes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[50000],PrimeOmega[(#-1)^2+1]==2&&PrimeQ[#^2+1]&&PrimeOmega[(#+1)^2+1]==2&]
    Mean/@SequencePosition[Table[Which[PrimeQ[m^2+1],1,PrimeOmega[m^2+1]==2,2,True,0],{m,30000}],{2,1,2}] (* Requires Mathematica version 10 or later *)  (* Harvey P. Dale, Sep 04 2019 *)
  • PARI
    isok(m) = isprime(m^2+1) && (bigomega((m-1)^2+1) == 2) && (bigomega((m+1)^2+1) == 2); \\ Michel Marcus, Nov 20 2018