A321795 Numbers m such that m^2+1 is prime with (m-1)^2+1 and (m+1)^2+1 semiprimes.
4, 10, 170, 570, 780, 950, 1420, 2380, 2730, 3850, 4120, 4300, 5850, 6360, 6460, 6800, 6970, 7100, 7240, 8720, 9630, 10150, 10580, 11010, 11170, 11830, 12300, 14290, 16330, 17670, 17810, 17850, 17860, 18940, 19030, 20500, 21930, 23960, 24490, 25830, 26050
Offset: 1
Keywords
Examples
10 is in the sequence because 10^2 + 1 = 101 is prime, and 9^2 + 1 = 2*41, 11^2 + 1 = 2*61 are semiprimes.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[50000],PrimeOmega[(#-1)^2+1]==2&&PrimeQ[#^2+1]&&PrimeOmega[(#+1)^2+1]==2&] Mean/@SequencePosition[Table[Which[PrimeQ[m^2+1],1,PrimeOmega[m^2+1]==2,2,True,0],{m,30000}],{2,1,2}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 04 2019 *)
-
PARI
isok(m) = isprime(m^2+1) && (bigomega((m-1)^2+1) == 2) && (bigomega((m+1)^2+1) == 2); \\ Michel Marcus, Nov 20 2018
Comments