A321881 Numbers whose sum and product of digits are cubes.
0, 1, 8, 10, 80, 100, 107, 170, 206, 260, 305, 350, 404, 440, 503, 530, 602, 620, 701, 710, 800, 999, 1000, 1007, 1016, 1025, 1034, 1043, 1052, 1061, 1070, 1106, 1124, 1142, 1160, 1205, 1214, 1241, 1250, 1304, 1340, 1403, 1412, 1421, 1430, 1502, 1520, 1601, 1610, 1700
Offset: 1
Examples
93111111111111111 (15 ones) is in the sequence since the sum and the product of the digits is 27 (a cube). 333 is not in the sequence since the product of the digits is 27 but the sum is 9 (not a cube).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n:n in [0..2000]| IsPower((&+Intseq(n)), 3) and IsPower((&*Intseq(n)), 3)] // Marius A. Burtea, Jan 21 2019
-
Maple
filter:= proc(n) local L; L:= convert(n,base,10); simplify(convert(L,`+`)^(1/3))::integer and simplify(convert(L,`*`)^(1/3))::integer; end proc: select(filter, [$0..1000]); # Robert Israel, Jan 21 2019
-
Mathematica
cubeQ[n_] := IntegerQ[Surd[n, 3]]; aQ[n_] := cubeQ[Plus @@ IntegerDigits[n]] && cubeQ[Times @@ IntegerDigits[n]]; Select[Range[0, 3000], aQ] (* Amiram Eldar, Nov 20 2018 *)
-
PARI
isok(n) = my(d=digits(n)); ispower(vecsum(d), 3) && ispower(vecprod(d), 3); \\ Michel Marcus, Nov 29 2018
Comments