A321891 Prime numbers of the form p^3 + q, where p and q are primes.
11, 13, 19, 29, 31, 37, 61, 67, 79, 97, 109, 127, 139, 157, 181, 199, 241, 271, 277, 367, 397, 409, 439, 457, 487, 499, 571, 577, 601, 607, 661, 691, 709, 727, 751, 769, 829, 919, 937, 991, 1021, 1039, 1069, 1117, 1171, 1201, 1231, 1237, 1291, 1297, 1327, 1381
Offset: 1
Keywords
Examples
37 is prime and 37 = 2^3 + 29, where 2 and 29 are primes, therefore 37 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 2000: # to get terms <= N A1:= select(t -> isprime(t) and isprime(t-8), {11,seq(i,i=13 ..N,6)}): v:= floor((N-2)^(1/3)): B:= select(t -> isprime(t) and isprime(t^3+2), {3,seq(i,i=5..v,6)}): sort(convert(A1 union map(t -> t^3+2,B), list)); # Robert Israel, Mar 05 2020
-
Mathematica
nmax=4; Select[Union[Prime[Range[nmax]]^3 + 2, Prime[Range[Prime[nmax]^3]] + 8], PrimeQ] (* Amiram Eldar, Nov 21 2018 *)
-
MiniZinc
include "globals.mzn"; int: n = 2; int: max_val = 1200000; array[1..n+1] of var 2..max_val: x; % primes between 2..max_valset of int: prime = 2..max_val diff { i | i in 2..max_val, j in 2..ceil(sqrt(i)) where i mod j = 0} ; set of int: primes; primes = prime union {2}; solve satisfy; constraint all_different(x) /\ x[1] in primes /\ x[2] in primes /\ x[3] in primes /\ pow(x[1], 3)+pow(x[2], 1)= x[3] ; output [ show(x)]
-
PARI
list(lim)=my(v=List()); forprime(p=3,sqrtnint((lim\=1)-2,3), if(isprime(p^3+2), listput(v,p^3+2))); forprime(p=11,lim+8, if(isprime(p-8), listput(v,p))); Set(v) \\ Charles R Greathouse IV, Jan 13 2025
-
PARI
select( {is_A321891(n)=isprime(n)&& (isprime(n-8)|| (ispower(n-2, 3, &n)&&isprime(n)))}, [1..1234]) \\ M. F. Hasler, Jan 13 2025
Extensions
More terms from Amiram Eldar, Nov 21 2018
Comments