cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321891 Prime numbers of the form p^3 + q, where p and q are primes.

Original entry on oeis.org

11, 13, 19, 29, 31, 37, 61, 67, 79, 97, 109, 127, 139, 157, 181, 199, 241, 271, 277, 367, 397, 409, 439, 457, 487, 499, 571, 577, 601, 607, 661, 691, 709, 727, 751, 769, 829, 919, 937, 991, 1021, 1039, 1069, 1117, 1171, 1201, 1231, 1237, 1291, 1297, 1327, 1381
Offset: 1

Views

Author

Pierandrea Formusa, Nov 20 2018

Keywords

Comments

For reasons of parity, either p or q must be equal to 2, so this actually is the union of (mostly) "primes of the form p + 8" (A092402) and (rarely) "primes of the form p^3 + 2" (A048636 = 29, 127, 24391, 357913, ...). - M. F. Hasler, Jan 13 2025
Except for 13, these primes are the minimum or maximum prime numbers of the respective decade. - Davide Rotondo, Jan 31 2025

Examples

			37 is prime and 37 = 2^3 + 29, where 2 and 29 are primes, therefore 37 is a term.
		

Crossrefs

Union of A048636 and A092402. - Michel Marcus, Nov 21 2018

Programs

  • Maple
    N:= 2000: # to get terms <= N
    A1:= select(t -> isprime(t) and isprime(t-8), {11,seq(i,i=13 ..N,6)}):
    v:= floor((N-2)^(1/3)):
    B:= select(t -> isprime(t) and isprime(t^3+2), {3,seq(i,i=5..v,6)}):
    sort(convert(A1 union map(t -> t^3+2,B), list)); # Robert Israel, Mar 05 2020
  • Mathematica
    nmax=4; Select[Union[Prime[Range[nmax]]^3 + 2, Prime[Range[Prime[nmax]^3]] + 8], PrimeQ] (* Amiram Eldar, Nov 21 2018 *)
  • MiniZinc
    include "globals.mzn";
    int: n = 2;
    int: max_val = 1200000;
    array[1..n+1] of var 2..max_val: x;
    % primes between 2..max_valset of int:
    prime = 2..max_val diff { i | i in 2..max_val, j in 2..ceil(sqrt(i)) where i mod j = 0} ;
    set of int: primes; primes = prime union {2};
    solve satisfy;
    constraint all_different(x) /\ x[1] in primes /\ x[2] in primes /\ x[3] in primes /\
    pow(x[1], 3)+pow(x[2], 1)= x[3] ;
    output [ show(x)]
    
  • PARI
    list(lim)=my(v=List()); forprime(p=3,sqrtnint((lim\=1)-2,3), if(isprime(p^3+2), listput(v,p^3+2))); forprime(p=11,lim+8, if(isprime(p-8), listput(v,p))); Set(v) \\ Charles R Greathouse IV, Jan 13 2025
    
  • PARI
    select( {is_A321891(n)=isprime(n)&& (isprime(n-8)|| (ispower(n-2, 3, &n)&&isprime(n)))}, [1..1234]) \\ M. F. Hasler, Jan 13 2025

Extensions

More terms from Amiram Eldar, Nov 21 2018