A322013 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k introduced in order 1..k with no element equal to another within a distance of 1.
1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 36, 29, 1, 0, 1, 329, 1721, 182, 1, 0, 1, 3655, 163386, 94376, 1198, 1, 0, 1, 47844, 22831355, 98371884, 5609649, 8142, 1, 0, 1, 721315, 4420321081, 182502973885, 66218360625, 351574834, 56620, 1, 0
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 5, 36, 329, 3655, ... 0, 1, 29, 1721, 163386, 22831355, ... 0, 1, 182, 94376, 98371884, 182502973885, ... 0, 1, 1198, 5609649, 66218360625, 1681287695542855, ... 0, 1, 8142, 351574834, 47940557125969, 16985819072511102549, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..53, flattened
- Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
- Mathematics.StackExchange, Find the number of k 1's, k 2's, ... , k n's - total kn cards, Apr 08 2012.
Crossrefs
Programs
-
PARI
q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!) T(n,k) = subst(serlaplace(q(n,x)^k), x, 1)/k! \\ Andrew Howroyd, Feb 03 2024
Formula
T(n,k) = A322093(n,k) / k!. - Andrew Howroyd, Feb 03 2024