A322082 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, n/d odd} d^k.
1, 1, 1, 1, 2, 2, 1, 4, 4, 1, 1, 8, 10, 4, 2, 1, 16, 28, 16, 6, 2, 1, 32, 82, 64, 26, 8, 2, 1, 64, 244, 256, 126, 40, 8, 1, 1, 128, 730, 1024, 626, 224, 50, 8, 3, 1, 256, 2188, 4096, 3126, 1312, 344, 64, 13, 2, 1, 512, 6562, 16384, 15626, 7808, 2402, 512, 91, 12, 2, 1, 1024, 19684, 65536, 78126, 46720, 16808, 4096, 757, 104, 12, 2
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 8, 16, 32, ... 2, 4, 10, 28, 82, 244, ... 1, 4, 16, 64, 256, 1024, ... 2, 6, 26, 126, 626, 3126, ... 2, 8, 40, 224, 1312, 7808, ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 antidiagonals)
- Index entries for sequences mentioned by Glaisher
Crossrefs
Programs
-
Mathematica
Table[Function[k, Sum[Boole[OddQ[n/d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 - x^(2 j)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
-
PARI
T(n,k)={sumdiv(n, d, if(n/d%2, d^k))} for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018
Formula
G.f. of column k: Sum_{j>=1} j^k*x^j/(1 - x^(2*j)).