A322148 Regular triangle where T(n,k) is the number of labeled connected multigraphs with loops with n edges and k vertices.
1, 1, 1, 1, 3, 3, 1, 6, 16, 16, 1, 10, 51, 127, 125, 1, 15, 126, 574, 1347, 1296, 1, 21, 266, 1939, 8050, 17916, 16807, 1, 28, 504, 5440, 35210, 135156, 286786, 262144, 1, 36, 882, 13387, 125730, 736401, 2642122, 5368728, 4782969, 1, 45, 1452, 29854, 388190, 3239491, 17424610, 58925728, 115089813, 100000000
Offset: 0
Examples
Triangle begins: 1 1 1 1 3 3 1 6 16 16 1 10 51 127 125 1 15 126 574 1347 1296 1 21 266 1939 8050 17916 16807
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
Crossrefs
Programs
-
Mathematica
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[If[n==0,1,Length[Select[multsubs[multsubs[Range[k],2],n],And[Union@@#==Range[k],Length[csm[#]]==1]&]]],{n,0,5},{k,1,n+1}]
-
PARI
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u} M(n)={Mat([Col(p, -(n+1)) | p<-Connected(vector(2*n, j, 1/(1 - x + O(x*x^n) )^binomial(j+1, 2)))[1..n+1]])} { my(T=M(10)); for(n=1, #T, print(T[n,][1..n])) } \\ Andrew Howroyd, Nov 29 2018
Extensions
Offset corrected and terms a(28) and beyond from Andrew Howroyd, Nov 29 2018