A076864
Number of connected loopless multigraphs with n edges.
Original entry on oeis.org
1, 1, 2, 5, 12, 33, 103, 333, 1183, 4442, 17576, 72810, 314595, 1410139, 6541959, 31322474, 154468852, 783240943, 4077445511, 21765312779, 118999764062, 665739100725, 3807640240209, 22246105114743, 132672322938379, 807126762251748
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler, Energy flow polynomials: A complete linear basis for jet substructure, arXiv:1712.07124 [hep-ph], 2017.
- Tsuyoshi Miezaki, Akihiro Munemasa, Yusaku Nishimura, Tadashi Sakuma, and Shuhei Tsujie, Universal graph series, chromatic functions, and their index theory, arXiv:2403.09985 [math.CO], 2024. See p. 23.
- N. J. A. Sloane, Transforms
- Gus Wiseman, Non-isomorphic representatives of the unlabeled connected multigraphs counted by the first 5 terms
-
A050535 = Cases[Import["https://oeis.org/A050535/b050535.txt", "Table"], {, }][[All, 2]];
(* EulerInvTransform is defined in A022562 *)
Join[{1}, EulerInvTransform[A050535 // Rest]] (* Jean-François Alcover, Feb 11 2020, updated Mar 17 2020 *)
A322152
Number of labeled connected multigraphs with loops with n edges (the vertices are {1,2,...,k} for some k).
Original entry on oeis.org
1, 2, 7, 39, 314, 3359, 45000, 725269, 13670256, 295099184, 7179749707, 194399095705, 5797793490859, 188855813757729, 6671188010874785, 254007814638737649, 10370334196814589256, 451923738493729293016, 20937747226064522726151, 1027666505638118490940059
Offset: 0
-
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[multsubs[multsubs[Range[n+1],2],n],And[Union@@#==Range[Max@@Union@@#],Length[csm[#]]==1]&]],{n,5}]
-
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, 1/(1 - x + O(x*x^n))^binomial(j+1,2)))))} \\ Andrew Howroyd, Nov 28 2018
Showing 1-2 of 2 results.
Comments