cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322167 Decimal expansion of asymptotic probability of success in the returning secretary problem.

Original entry on oeis.org

7, 6, 7, 9, 7, 4, 2, 6, 7, 2, 7, 9, 5, 7, 3, 4, 3, 0, 3, 0, 1, 8, 2, 2, 8, 9, 3, 7, 1, 8, 6, 4, 5, 0, 3, 9, 6, 5, 4, 2, 2, 4, 8, 3, 1, 0, 1, 3, 7, 2, 1, 0, 9, 9, 4, 0, 4, 1, 9, 0, 9, 9, 2, 7, 4, 8, 7, 0, 3, 7, 9, 5, 0, 5, 2, 0, 1, 3, 3
Offset: 0

Views

Author

Keywords

Examples

			0.76797426727957343030182289371864503965422...
		

Crossrefs

Cf. A322166.

Programs

  • Maple
    x:=2/LambertW(2*exp(5)): evalf[90]((1/3)*(-4+6*sqrt(1-x)+4*x+(-2+2*sqrt(1-x)+x)*log(x))); # Muniru A Asiru, Dec 21 2018
  • Mathematica
    With[{x = 2/ProductLog[2*Exp[5]]}, RealDigits[(6*Sqrt[1 - x] + 4*x - 4 + (2*Sqrt[1 - x] + x - 2)*Log[x])/3, 10, 120][[1]]] (* Amiram Eldar, May 30 2023 *)

Formula

Equals (1/3)*(-4 + 6*sqrt(1 - x) + 4*x + (-2 + 2*sqrt(1-x) + x)*log(x)) where x = A322166.

A375596 Decimal expansion of 1/(1 - W(1/e)), where W is the Lambert W function.

Original entry on oeis.org

1, 3, 8, 5, 9, 3, 3, 2, 7, 5, 9, 9, 8, 1, 9, 4, 2, 5, 3, 8, 6, 0, 6, 2, 1, 8, 1, 4, 8, 8, 2, 5, 1, 5, 8, 6, 0, 6, 4, 5, 1, 3, 2, 7, 9, 6, 5, 7, 0, 5, 8, 1, 7, 7, 9, 1, 6, 7, 6, 7, 1, 4, 2, 5, 2, 7, 8, 6, 1, 8, 1, 9, 7, 2, 3, 1, 0, 5, 1, 8, 1, 9, 3, 3, 3, 3, 9, 5, 2, 6, 7, 0, 6, 5, 4, 2, 6, 5, 2, 0
Offset: 1

Views

Author

Stefano Spezia, Aug 20 2024

Keywords

Examples

			1.38593327599819425386062181488251586064513...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/(1-ProductLog[1/E]),10,100][[1]]
  • PARI
    1/(1-lambertw(1/exp(1))) \\ Michel Marcus, Aug 20 2024

Formula

Equals 1/(1 - A202357).
Showing 1-2 of 2 results.