cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A322209 L.g.f.: log( Product_{n>=1} 1/(1 - (2^n+1)*x^n) ).

Original entry on oeis.org

0, 3, 19, 54, 199, 408, 1612, 3090, 11023, 26487, 80994, 199686, 676540, 1700832, 5285096, 15197274, 45739039, 131368404, 401655943, 1172222958, 3549402474, 10533769146, 31617172980, 94336116834, 283990486780, 848323147233, 2546924693306, 7631598676410, 22903854049016, 68645946621360, 206035134959112, 617739968277066, 1853594327953471
Offset: 0

Views

Author

Paul D. Hanna, Dec 01 2018

Keywords

Examples

			L.g.f.: L(x) = 3*x + 19*x^2/2 + 54*x^3/3 + 199*x^4/4 + 408*x^5/5 + 1612*x^6/6 + 3090*x^7/7 + 11023*x^8/8 + 26487*x^9/9 + 80994*x^10/10 + 199686*x^11/11 + 676540*x^12/12 + ...
such that
exp( L(x) ) = 1 + 3*x + 14*x^2 + 51*x^3 + 195*x^4 + 663*x^5 + 2345*x^6 + 7707*x^7 + 25744*x^8 + 82980*x^9 + 267812*x^10 + 846150*x^11 + 2676163*x^12 + ... + A322199(n)*x^n + ...
also,
exp( L(x) ) = 1/( (1 - 3*x) * (1 - 5*x^2) * (1 - 9*x^3) * (1 - 17*x^4) * (1 - 33*x^5) * (1 - 65*x^6) * (1 - 129*x^7) * ... * (1 - (2^n+1)*x^n) * ... ).
		

Crossrefs

Programs

  • PARI
    {L = sum(n=1,41, -log(1 - (x^n + y^n) +O(x^41) +O(y^41)) );}
    {A322200(n,k) = polcoeff( (n+k)*polcoeff( L,n,x),k,y)}
    {a(n) = sum(k=0,n, A322200(n-k,k)*2^k )}
    for(n=0,40, print1( a(n),", ") )

Formula

a(n) = Sum_{k=0..n} A322200(n-k,k) * 2^k for n >= 0.

A382976 Expansion of Product_{k>=1} (1 + (2^k + 1) * x^k).

Original entry on oeis.org

1, 3, 5, 24, 44, 129, 384, 897, 2220, 5706, 15268, 35178, 89829, 212982, 526222, 1294263, 3087570, 7300896, 17726100, 41705904, 98782950, 236059794, 551697495, 1293417672, 3033232130, 7081297146, 16430673765, 38347412562, 88762751808, 204970377366, 473719894598
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2025

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = -(2^n + 1).

Crossrefs

Programs

  • Mathematica
    n=30; CoefficientList[Normal@Series[Product[1+(2^k+1) x^k,{k,1,n}],{x,0,n}],x] (* Vincenzo Librandi, Apr 11 2025 *)
  • PARI
    f(n) = -1;
    g(n) = -(2^n+1);
    a_vector(n) = my(b=vector(n, k, sumdiv(k, d, d*f(d)*g(d)^(k/d))), v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, b[j]*v[i-j+1])/i); v;

Formula

a(n) = Sum_{k=0..n} 2^k * A284593(k,n-k).
a(n) ~ A079555 * 2^(n-1) * exp(Pi*sqrt(n/3)) / (3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Apr 11 2025

A382977 Expansion of Product_{k>=1} 1/(1 - (2^k - 1) * x^k).

Original entry on oeis.org

1, 1, 4, 11, 35, 87, 271, 659, 1908, 4832, 13132, 32688, 89109, 218385, 571489, 1427388, 3652877, 8980805, 22858201, 55822728, 140065621, 342001192, 845707856, 2052802367, 5057431745, 12197383588, 29738238996, 71604414162, 173406091548, 415167136507, 1000881376700
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2025

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1, g(n) = 2^n - 1.

Crossrefs

Programs

  • Magma
    n := 30; R := PowerSeriesRing(Rationals(), n+1); f := &*[ 1 / (1 - (2^k - 1)*x^k) : k in [1..n] ]; coeffs := [Coefficient(f, i) : i in [0..n]]; coeffs; // Vincenzo Librandi, Apr 11 2025
  • Mathematica
    n=30; CoefficientList[Normal@Series[Product[1/(1-(2^k-1) x^k),{k,1,n}],{x,0,n}],x] (* Vincenzo Librandi, Apr 11 2025 *)
  • PARI
    f(n) = 1;
    g(n) = 2^n-1;
    a_vector(n) = my(b=vector(n, k, sumdiv(k, d, d*f(d)*g(d)^(k/d))), v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, b[j]*v[i-j+1])/i); v;
    

Formula

a(n) = Sum_{k=0..n} 2^k * A382974(k,n-k).
log(a(n)) ~ n*log(2) + Pi*sqrt(2*n/3). - Vaclav Kotesovec, Apr 13 2025

A382978 Expansion of Product_{k>=1} (1 + (2^k - 1) * x^k).

Original entry on oeis.org

1, 1, 3, 10, 22, 67, 160, 433, 986, 2774, 6386, 16214, 39201, 95868, 229644, 569707, 1324730, 3186326, 7664378, 17955006, 42497434, 100710158, 235492595, 549267552, 1288847672, 2990756088, 6958113345, 16148883002, 37286262238, 85880711282, 198840926982, 454980392570
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2025

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = -(2^n - 1).

Crossrefs

Programs

  • Magma
    n := 31; R := PowerSeriesRing(Rationals(), n+1); f := &*[ (1 + (2^k - 1)*x^k) : k in [1..n] ]; coeffs := [Coefficient(f, i) : i in [0..n]];coeffs; // Vincenzo Librandi, Apr 11 2025
  • Mathematica
    n=31;CoefficientList[Normal@Series[Product[(1+(2^k-1) x^k),{k,1,n}],{x,0,n}],x] (* Vincenzo Librandi, Apr 11 2025 *)
  • PARI
    f(n) = -1;
    g(n) = -(2^n-1);
    a_vector(n) = my(b=vector(n, k, sumdiv(k, d, d*f(d)*g(d)^(k/d))), v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, b[j]*v[i-j+1])/i); v;
    

Formula

a(n) = Sum_{k=0..n} 2^k * A382975(k,n-k).
a(n) ~ A048651 * 2^(n-1) * exp(Pi*sqrt(n/3)) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 13 2025
Showing 1-4 of 4 results.