cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322248 G.f.: 1/sqrt( (1 + 3*x)*(1 - 13*x) ).

Original entry on oeis.org

1, 5, 57, 605, 6961, 81525, 973545, 11765325, 143522145, 1763351525, 21789466777, 270509191485, 3371353189009, 42155188480085, 528587607974217, 6644129071092525, 83691484792766145, 1056178325362832325, 13351036742005533945, 169019946403985898525, 2142600388730167543281, 27193744661180635582005, 345520219114720175821737, 4394534009569783690837005, 55943630366450131877449761, 712778930909503993783945125
Offset: 0

Views

Author

Paul D. Hanna, Dec 10 2018

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 57*x^2 + 605*x^3 + 6961*x^4 + 81525*x^5 + 973545*x^6 + 11765325*x^7 + 143522145*x^8 + 1763351525*x^9 + 21789466777*x^10 + ...
such that A(x)^2 = 1/(1 - 10*x - 39*x^2).
RELATED SERIES.
exp( Sum_{n>=1} a(n)*x^n/n ) = 1 + 5*x + 41*x^2 + 365*x^3 + 3537*x^4 + 35925*x^5 + 378105*x^6 + 4084925*x^7 + 45044129*x^8 + 504880805*x^9 + 5735247817*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[((1+3x)(1-13x))],{x,0,30}],x] (* Harvey P. Dale, Jun 29 2021 *)
  • PARI
    /* Using generating function: */
    {a(n) = polcoeff( 1/sqrt((1 + 3*x)*(1 - 13*x) +x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Using binomial formula: */
    {a(n) = sum(k=0,n, (-3)^(n-k)*4^k*binomial(n,k)*binomial(2*k,k))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Using binomial formula: */
    {a(n) = sum(k=0,n, 13^(n-k)*(-4)^k*binomial(n,k)*binomial(2*k,k))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* a(n) as a central coefficient */
    {a(n) = polcoeff( (1 + 5*x + 16*x^2 +x*O(x^n))^n, n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} 13^(n-k) * (-4)^k * binomial(n,k)*binomial(2*k,k).
a(n) = Sum_{k=0..n} (-3)^(n-k) * 4^k * binomial(n,k)*binomial(2*k,k).
a(n) equals the (central) coefficient of x^n in (1 + 5*x + 16*x^2)^n.
a(n) ~ 13^(n + 1/2) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Dec 10 2018
D-finite with recurrence: n*a(n) = 5*(2*n-1)*a(n-1) + 39*(n-1)*a(n-2) for n > 1. - Seiichi Manyama, Apr 22 2019
a(n) = (1/4)^n * Sum_{k=0..n} (-3)^k * 13^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025