cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322259 Decimal expansion of exp(-9 + 5*phi), where phi is the golden ratio.

Original entry on oeis.org

4, 0, 2, 5, 9, 2, 6, 3, 6, 3, 2, 2, 4, 7, 8, 2, 4, 7, 5, 7, 4, 4, 6, 7, 2, 1, 5, 8, 4, 3, 9, 9, 0, 1, 6, 4, 3, 7, 4, 6, 4, 1, 4, 8, 2, 4, 4, 4, 4, 0, 9, 3, 7, 3, 9, 5, 1, 6, 8, 4, 2, 3, 1, 9, 1, 4, 1, 8, 5, 3, 0, 3, 1, 2, 6, 8, 8, 5, 3, 3, 7, 1, 4, 6, 7, 6, 5
Offset: 0

Views

Author

Amiram Eldar, Dec 01 2018

Keywords

Examples

			0.40259263632247824757446721584399016437464148244440...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp(-(13-5*Sqrt(5))/2); // G. C. Greubel, Dec 16 2018
    
  • Maple
    evalf[100](exp(-9+5*(1+sqrt(5))/2)); # Muniru A Asiru, Dec 06 2018
  • Mathematica
    RealDigits[Exp[-9+5*GoldenRatio], 10, 120][[1]]
  • PARI
    exp(-(13-5*sqrt(5))/2) \\ Michel Marcus, Dec 02 2018
    
  • Sage
    numerical_approx(exp(-(9-5*golden_ratio)), digits=100) # G. C. Greubel, Dec 16 2018

Formula

Equals Product_{k>=1} (L(k)/(sqrt(5)*F(k)))^(mu(k)/k), where L(k) and F(k) are the Lucas and Fibonacci numbers, and mu(k) is the Moebius function.
Equals exp(-A226765).