A322259 Decimal expansion of exp(-9 + 5*phi), where phi is the golden ratio.
4, 0, 2, 5, 9, 2, 6, 3, 6, 3, 2, 2, 4, 7, 8, 2, 4, 7, 5, 7, 4, 4, 6, 7, 2, 1, 5, 8, 4, 3, 9, 9, 0, 1, 6, 4, 3, 7, 4, 6, 4, 1, 4, 8, 2, 4, 4, 4, 4, 0, 9, 3, 7, 3, 9, 5, 1, 6, 8, 4, 2, 3, 1, 9, 1, 4, 1, 8, 5, 3, 0, 3, 1, 2, 6, 8, 8, 5, 3, 3, 7, 1, 4, 6, 7, 6, 5
Offset: 0
Examples
0.40259263632247824757446721584399016437464148244440...
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..2000
- Don Redmond, Infinite products and Fibonacci numbers, Fib. Quart., Vol. 32, No. 3 (1994), pp. 234-239.
- Index entries for transcendental numbers
Programs
-
Magma
SetDefaultRealField(RealField(100)); Exp(-(13-5*Sqrt(5))/2); // G. C. Greubel, Dec 16 2018
-
Maple
evalf[100](exp(-9+5*(1+sqrt(5))/2)); # Muniru A Asiru, Dec 06 2018
-
Mathematica
RealDigits[Exp[-9+5*GoldenRatio], 10, 120][[1]]
-
PARI
exp(-(13-5*sqrt(5))/2) \\ Michel Marcus, Dec 02 2018
-
Sage
numerical_approx(exp(-(9-5*golden_ratio)), digits=100) # G. C. Greubel, Dec 16 2018
Formula
Equals Product_{k>=1} (L(k)/(sqrt(5)*F(k)))^(mu(k)/k), where L(k) and F(k) are the Lucas and Fibonacci numbers, and mu(k) is the Moebius function.
Equals exp(-A226765).