cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322280 Array read by antidiagonals: T(n,k) is the number of graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 26, 1, 0, 1, 5, 28, 123, 162, 1, 0, 1, 6, 45, 340, 1635, 1442, 1, 0, 1, 7, 66, 725, 7108, 35043, 18306, 1, 0, 1, 8, 91, 1326, 20805, 254404, 1206915, 330626, 1, 0, 1, 9, 120, 2191, 48486, 1058885, 15531268, 66622083, 8488962, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Dec 01 2018

Keywords

Comments

Not all colors need to be used.

Examples

			Array begins:
===============================================================
n\k| 0 1      2        3          4           5           6
---+-----------------------------------------------------------
0  | 1 1      1        1          1           1           1 ...
1  | 0 1      2        3          4           5           6 ...
2  | 0 1      6       15         28          45          66 ...
3  | 0 1     26      123        340         725        1326 ...
4  | 0 1    162     1635       7108       20805       48486 ...
5  | 0 1   1442    35043     254404     1058885     3216486 ...
6  | 0 1  18306  1206915   15531268    95261445   386056326 ...
7  | 0 1 330626 66622083 1613235460 15110296325 83645197446 ...
...
		

Crossrefs

Columns k=0..4 are A000007, A000012, A047863, A191371, A223887.
Main diagonal gives A372920.

Programs

  • Mathematica
    nmax = 10;
    T[n_, k_] := n!*2^Binomial[n, 2]*SeriesCoefficient[Sum[ x^i/(i!* 2^Binomial[i, 2]), {i, 0, nmax}]^k, {x, 0, n}];
    Table[T[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 23 2019 *)
  • PARI
    M(n)={
      my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
      my(q=sum(j=0, n, x^j*j!*2^binomial(j, 2)) + O(x*x^n));
      matconcat([1, Mat(vector(n, k, Col(serconvol(q, p^k))))]);
    }
    my(T=M(7)); for(n=1, #T, print(T[n,]))

Formula

T(n,k) = n!*2^binomial(n,2) * [x^n](Sum_{i>=0} x^i/(i!*2^binomial(i,2)))^k.
T(n,k) = Sum_{j=0..k} binomial(k,j)*j!*A058843(n,j).