A322353 Number of factorizations of n into distinct semiprimes; a(1) = 1 by convention.
1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1
Keywords
Examples
a(4) = 1, as there is just one way to factor 4 into distinct semiprimes, namely as {4}. From _Gus Wiseman_, Dec 31 2020: (Start) The a(n) factorizations for n = 60, 210, 840, 1260, 4620, 12600, 18480: 4*15 6*35 4*6*35 4*9*35 4*15*77 4*6*15*35 4*6*10*77 6*10 10*21 4*10*21 4*15*21 4*21*55 4*6*21*25 4*6*14*55 14*15 4*14*15 6*10*21 4*33*35 4*9*10*35 4*6*22*35 6*10*14 6*14*15 6*10*77 4*9*14*25 4*10*14*33 9*10*14 6*14*55 4*10*15*21 4*10*21*22 6*22*35 6*10*14*15 4*14*15*22 10*14*33 6*10*14*22 10*21*22 14*15*22 (End)
Links
Crossrefs
Programs
-
Mathematica
Table[Count[Subsets[Select[Divisors[n], PrimeOmega[#] == 2 &]], ?(Times @@ # == n &)], {n, 105}] (* _Michael De Vlieger, Dec 11 2020 *)
-
PARI
A322353(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((2==bigomega(d)&&(d<=m)), s += A322353(n/d, d-1))); (s)); \\ Antti Karttunen, Dec 10 2020
Comments