cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A359786 Dirichlet inverse of A322353, where A322353(n) is the number of factorizations of n into distinct semiprimes.

Original entry on oeis.org

1, 0, 0, -1, 0, -1, 0, 0, -1, -1, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, -1, -1, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, 0, -1, -1, 1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0, 0, 1, -1, 1, -1, -1, 0, 2, 0, -1, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 1, -1, 0, 2, -1, -1, -1, 1, 0, 2, -1, 0, -1, -1, -1, -1, 0, 0, 0, 2, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Jan 16 2023

Keywords

Crossrefs

Cf. A320655 (seems to give the absolute values), A322353, A359785.

Programs

  • PARI
    A322353(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((2==bigomega(d)&&(d<=m)), s += A322353(n/d, d-1))); (s));
    memoA359786 = Map();
    A359786(n) = if(1==n,1,my(v); if(mapisdefined(memoA359786,n,&v), v, v = -sumdiv(n,d,if(dA322353(n/d)*A359786(d),0)); mapput(memoA359786,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA322353(n/d) * a(d).

A320892 Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into distinct semiprimes.

Original entry on oeis.org

16, 64, 81, 96, 144, 160, 224, 256, 324, 352, 384, 400, 416, 486, 544, 576, 608, 625, 640, 729, 736, 784, 864, 896, 928, 960, 992, 1024, 1184, 1215, 1296, 1312, 1344, 1376, 1408, 1440, 1504, 1536, 1600, 1664, 1696, 1701, 1888, 1936, 1944, 1952, 2016, 2025
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Comments

A semiprime (A001358) is a product of any two not necessarily distinct primes.
If A025487(k) is in the sequence then so is every number with the same prime signature. - David A. Corneth, Oct 23 2018
Numbers for which A001222(n) is even and A322353(n) is zero. - Antti Karttunen, Dec 06 2018

Examples

			A complete list of all factorizations of 1296 into semiprimes is:
  1296 = (4*4*9*9)
  1296 = (4*6*6*9)
  1296 = (6*6*6*6)
None of these is strict, so 1296 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    strsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Select[Range[1000],And[EvenQ[PrimeOmega[#]],strsemfacs[#]=={}]&]
  • PARI
    A322353(n, m=n, facs=List([])) = if(1==n, my(u=apply(bigomega,Vec(facs))); (0==length(u)||(2==vecmin(u)&&2==vecmax(u))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A322353(n/d, d-1, newfacs))); (s));
    isA300892(n) = if(bigomega(n)%2,0,(0==A322353(n))); \\ Antti Karttunen, Dec 06 2018

A004251 Number of graphical partitions (degree-vectors for simple graphs with n vertices, or possible ordered row-sum vectors for a symmetric 0-1 matrix with diagonal values 0).

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 102, 342, 1213, 4361, 16016, 59348, 222117, 836315, 3166852, 12042620, 45967479, 176005709, 675759564, 2600672458, 10029832754, 38753710486, 149990133774, 581393603996, 2256710139346, 8770547818956, 34125389919850, 132919443189544, 518232001761434, 2022337118015338, 7898574056034636, 30873421455729728
Offset: 0

Views

Author

Keywords

Comments

In other words, a(n) is the number of graphic sequences of length n, where a graphic sequence is a sequence of numbers which can be the degree sequence of some graph.
In the article by A. Iványi, G. Gombos, L. Lucz, and T. Matuszka, "Parallel enumeration of degree sequences of simple graphs II", in Table 4 on page 260 the values a(30) = 7898574056034638 and a(31) = 30873429530206738 are incorrect due to the incorrect Gz(30) = 5876236938019300 and Gz(31) = 22974847474172100. - Wang Kai, Jun 05 2016

Examples

			For n = 3, there are 4 different graphic sequences possible: 0 0 0; 1 1 0; 2 1 1; 2 2 2. - Daan van Berkel (daan.v.berkel.1980(AT)gmail.com), Jun 25 2010
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(4) = 11 sorted degree sequences:
  ()  (0)  (0,0)  (0,0,0)  (0,0,0,0)
           (1,1)  (0,1,1)  (0,0,1,1)
                  (1,1,2)  (0,1,1,2)
                  (2,2,2)  (0,2,2,2)
                           (1,1,1,1)
                           (1,1,1,3)
                           (1,1,2,2)
                           (1,2,2,3)
                           (2,2,2,2)
                           (2,2,3,3)
                           (3,3,3,3)
For example, the graph {{2,3},{2,4}} has degrees (0,2,1,1), so (0,1,1,2) is counted under a(4).
(End)
		

References

  • R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).

Crossrefs

Counting the positive partitions by sum gives A000569, ranked by A320922.
The version with half-loops is A029889, with covering case A339843.
The covering case (no zeros) is A095268.
Covering simple graphs are ranked by A309356 and A320458.
Non-graphical partitions are counted by A339617 and ranked by A339618.
The version with loops is A339844, with covering case A339845.
A006125 counts simple graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320921 counts connected graphical partitions.
A322353 counts factorizations into distinct semiprimes.
A339659 counts graphical partitions of 2n into k parts.
A339661 counts factorizations into distinct squarefree semiprimes.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{2}]]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)

Formula

G.f. = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 31*x^5 + 102*x^6 + 342*x^7 + 1213*x^8 + ...
a(n) ~ c * 4^n / n^(3/4) for some constant c > 0. Computational estimates suggest c ≈ 0.099094. - Tom Johnston, Jan 18 2023

Extensions

More terms from Torsten Sillke, torsten.sillke(AT)lhsystems.com, using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(19) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007
a(20)-a(23) from Nathann Cohen, Jul 09 2011
a(24)-a(29) from Antal Iványi, Nov 15 2011
a(30) and a(31) corrected by Wang Kai, Jun 05 2016

A338914 Number of integer partitions of n of even length whose greatest multiplicity is at most half their length.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 23, 29, 39, 53, 69, 90, 118, 150, 195, 249, 315, 398, 506, 629, 789, 982, 1219, 1504, 1860, 2277, 2798, 3413, 4161, 5051, 6137, 7406, 8948, 10765, 12943, 15503, 18571, 22153, 26432, 31432, 37352, 44268, 52444, 61944, 73141
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2020

Keywords

Comments

These are also integer partitions that can be partitioned into not necessarily distinct edges (pairs of distinct parts). For example, (3,3,2,2) can be partitioned as {{2,3},{2,3}}, so is counted under a(10), but (4,2,2,2) and (4,2,1,1,1,1) cannot be partitioned into edges. The multiplicities of such a partition form a multigraphical partition (A209816, A320924).

Examples

			The a(3) = 1 through a(10) = 11 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)    (54)      (64)
              (41)  (51)    (52)    (62)    (63)      (73)
                    (2211)  (61)    (71)    (72)      (82)
                            (3211)  (3221)  (81)      (91)
                                    (3311)  (3321)    (3322)
                                    (4211)  (4221)    (4321)
                                            (4311)    (4411)
                                            (5211)    (5221)
                                            (222111)  (5311)
                                                      (6211)
                                                      (322111)
		

Crossrefs

A096373 counts the complement in even-length partitions.
A320911 gives the Heinz numbers of these partitions.
A339560 is the strict case.
A339562 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320656 counts factorizations into squarefree semiprimes.
A320921 counts connected graphical partitions, ranked by A320923.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
A339656 counts loop-graphical partitions, ranked by A339658.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Max@@Length/@Split[#]<=Length[#]/2&]],{n,0,30}]

Formula

A027187(n) = a(n) + A096373(n).

A338915 Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of not necessarily distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 1, 4, 2, 6, 6, 12, 12, 20, 22, 38, 42, 60, 73, 101, 124, 164, 203, 266, 319, 415, 507, 649, 786, 983, 1198, 1499, 1797, 2234, 2673, 3303, 3952, 4826, 5753, 6999, 8330, 10051, 11943, 14357, 16956, 20322, 23997, 28568, 33657, 39897, 46879
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2020

Keywords

Comments

The multiplicities of such a partition form a non-loop-graphical partition (A339655, A339657).

Examples

			The a(7) = 1 through a(12) = 12 partitions:
  211111  2222      411111    222211      222221      3333
          221111    21111111  331111      611111      222222
          311111              511111      22211111    441111
          11111111            22111111    32111111    711111
                              31111111    41111111    22221111
                              1111111111  2111111111  32211111
                                                      33111111
                                                      42111111
                                                      51111111
                                                      2211111111
                                                      3111111111
                                                      111111111111
For example, the partition y = (3,2,2,1,1,1,1,1) can be partitioned into pairs in just three ways:
  {{1,1},{1,1},{1,2},{2,3}}
  {{1,1},{1,1},{1,3},{2,2}}
  {{1,1},{1,2},{1,2},{1,3}}
None of these is strict, so y is counted under a(12).
		

Crossrefs

The Heinz numbers of these partitions are A320892.
The complement in even-length partitions is A338916.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
A339656 counts loop-graphical partitions, ranked by A339658.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    smcs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[smcs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&smcs[Times@@Prime/@#]=={}&]],{n,0,10}]

Formula

A027187(n) = a(n) + A338916(n).

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A338916 Number of integer partitions of n that can be partitioned into distinct pairs of (possibly equal) parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 6, 8, 12, 16, 21, 28, 37, 49, 64, 80, 104, 135, 169, 216, 268, 341, 420, 527, 654, 809, 991, 1218, 1488, 1828, 2213, 2687, 3262, 3934, 4754, 5702, 6849, 8200, 9819, 11693, 13937, 16562, 19659, 23262, 27577, 32493, 38341, 45112, 53059, 62265
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2020

Keywords

Comments

The multiplicities of such a partition form a loop-graphical partition (A339656, A339658).

Examples

			The a(2) = 1 through a(10) = 16 partitions:
  (11)  (21)  (22)  (32)    (33)    (43)    (44)    (54)      (55)
              (31)  (41)    (42)    (52)    (53)    (63)      (64)
                    (2111)  (51)    (61)    (62)    (72)      (73)
                            (2211)  (2221)  (71)    (81)      (82)
                            (3111)  (3211)  (3221)  (3222)    (91)
                                    (4111)  (3311)  (3321)    (3322)
                                            (4211)  (4221)    (3331)
                                            (5111)  (4311)    (4222)
                                                    (5211)    (4321)
                                                    (6111)    (4411)
                                                    (222111)  (5221)
                                                    (321111)  (5311)
                                                              (6211)
                                                              (7111)
                                                              (322111)
                                                              (421111)
For example, the partition (4,2,1,1,1,1) can be partitioned into {{1,1},{1,2},{1,4}}, and thus is counted under a(10).
		

Crossrefs

A320912 gives the Heinz numbers of these partitions.
A338915 counts the complement in even-length partitions.
A339563 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
A339656 counts loop-graphical partitions, ranked by A339658.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    stfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Table[Length[Select[IntegerPartitions[n],stfs[Times@@Prime/@#]!={}&]],{n,0,20}]

Formula

A027187(n) = a(n) + A338915(n).

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A339656 Number of loop-graphical integer partitions of 2n.

Original entry on oeis.org

1, 2, 4, 8, 15, 28, 49, 84, 140, 229, 367, 577, 895, 1368, 2064, 3080, 4547, 6642, 9627, 13825, 19704, 27868, 39164, 54656, 75832, 104584
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2020

Keywords

Comments

An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. See A339658 for the Heinz numbers, and A339655 for the complement.
The following are equivalent characteristics for any positive integer n:
(1) the multiset of prime factors of n can be partitioned into distinct pairs, i.e., into a set of edges and loops;
(2) n can be factored into distinct semiprimes;
(3) the unordered prime signature of n is loop-graphical.

Examples

			The a(0) = 1 through a(4) = 15 partitions:
  ()  (2)    (2,2)      (3,3)          (3,3,2)
      (1,1)  (3,1)      (2,2,2)        (4,2,2)
             (2,1,1)    (3,2,1)        (4,3,1)
             (1,1,1,1)  (4,1,1)        (2,2,2,2)
                        (2,2,1,1)      (3,2,2,1)
                        (3,1,1,1)      (3,3,1,1)
                        (2,1,1,1,1)    (4,2,1,1)
                        (1,1,1,1,1,1)  (5,1,1,1)
                                       (2,2,2,1,1)
                                       (3,2,1,1,1)
                                       (4,1,1,1,1)
                                       (2,2,1,1,1,1)
                                       (3,1,1,1,1,1)
                                       (2,1,1,1,1,1,1)
                                       (1,1,1,1,1,1,1,1)
For example, there are four possible loop-graphs with degrees y = (2,2,1,1), namely
  {{1,1},{2,2},{3,4}}
  {{1,1},{2,3},{2,4}}
  {{1,2},{1,3},{2,4}}
  {{1,2},{1,4},{2,3}}
  {{1,3},{1,4},{2,2}},
so y is counted under a(3). On the other hand, there are two possible loop-multigraphs with degrees z = (4,2), namely
  {{1,1},{1,1},{2,2}}
  {{1,1},{1,2},{1,2}},
but neither of these is a loop-graph, so z is not counted under a(3).
		

Crossrefs

A339658 ranks these partitions.
A001358 lists semiprimes, with squarefree case A006881.
A006125 counts labeled graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A062740 counts labeled connected loop-graphs.
A320461 ranks normal loop-graphs.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A322661 counts covering loop-graphs.
A339845 counts the same partitions by length, or A339844 with zeros.
The following count vertex-degree partitions and give their Heinz numbers:
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A000569 counts graphical partitions (A320922).
- A058696 counts partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n (A339618).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 [this sequence] counts loop-graphical partitions (A339658).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@spsbin[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Select[mpsbin[#],UnsameQ@@#&]!={}&]],{n,0,5}]

Formula

A058696(n) = a(n) + A339655(n).

Extensions

a(8)-a(25) from Andrew Howroyd, Jan 10 2024

A339742 Number of factorizations of n into distinct primes or squarefree semiprimes.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 3, 2, 2, 2, 0, 1, 3, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 4, 1, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct singletons or strict pairs, i.e., into a set of half-loops and edges;
(2) n can be factored into distinct primes or squarefree semiprimes.

Examples

			The a(n) factorizations for n = 6, 30, 60, 210, 420 are respectively 2, 4, 3, 10, 9:
  (6)    (5*6)    (6*10)    (6*35)     (2*6*35)
  (2*3)  (2*15)   (2*5*6)   (10*21)    (5*6*14)
         (3*10)   (2*3*10)  (14*15)    (6*7*10)
         (2*3*5)            (5*6*7)    (2*10*21)
                            (2*3*35)   (2*14*15)
                            (2*5*21)   (2*5*6*7)
                            (2*7*15)   (3*10*14)
                            (3*5*14)   (2*3*5*14)
                            (3*7*10)   (2*3*7*10)
                            (2*3*5*7)
		

Crossrefs

Dirichlet convolution of A008966 with A339661.
A008966 allows only primes.
A339661 does not allow primes, only squarefree semiprimes.
A339740 lists the positions of zeros.
A339741 lists the positions of positive terms.
A339839 allows nonsquarefree semiprimes.
A339887 is the non-strict version.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A013929 cannot be factored into distinct primes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339840 cannot be factored into distinct primes or semiprimes.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A050320 into squarefree numbers.
- A050326 into distinct squarefree numbers.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339742 [this sequence] into distinct primes or squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A000569 counts graphical partitions (A320922).
- A058696 counts all partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A339656 counts loop-graphical partitions (A339658).
-
The following count partitions/factorizations of even length and give their Heinz numbers:
- A027187/A339846 has no additional conditions (A028260).
- A338914/A339562 can be partitioned into edges (A320911).
- A338916/A339563 can be partitioned into distinct pairs (A320912).
- A339559/A339564 cannot be partitioned into distinct edges (A320894).
- A339560/A339619 can be partitioned into distinct edges (A339561).

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[sqps[n]],{n,100}]
  • PARI
    A353471(n) = (numdiv(n)==2*omega(n));
    A339742(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (dA353471(d), s += A339742(n/d, d))); (s)); \\ Antti Karttunen, May 02 2022

Formula

a(n) = Sum_{d|n squarefree} A339661(n/d).

Extensions

More terms from Antti Karttunen, May 02 2022

A339661 Number of factorizations of n into distinct squarefree semiprimes.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 19 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
Also the number of strict multiset partitions of the multiset of prime factors of n, into distinct strict pairs.

Examples

			The a(n) factorizations for n = 210, 1260, 4620, 30030, 69300 are respectively 3, 2, 6, 15, 7:
  (6*35)   (6*10*21)  (6*10*77)   (6*55*91)    (6*10*15*77)
  (10*21)  (6*14*15)  (6*14*55)   (6*65*77)    (6*10*21*55)
  (14*15)             (6*22*35)   (10*33*91)   (6*10*33*35)
                      (10*14*33)  (10*39*77)   (6*14*15*55)
                      (10*21*22)  (14*33*65)   (6*15*22*35)
                      (14*15*22)  (14*39*55)   (10*14*15*33)
                                  (15*22*91)   (10*15*21*22)
                                  (15*26*77)
                                  (21*22*65)
                                  (21*26*55)
                                  (22*35*39)
                                  (26*33*35)
                                  (6*35*143)
                                  (10*21*143)
                                  (14*15*143)
		

Crossrefs

Dirichlet convolution of A008836 (Liouville's lambda) with A339742.
A050326 allows all squarefree numbers, non-strict case A050320.
A320656 is the not necessarily strict version.
A320911 lists all (not just distinct) products of squarefree semiprimes.
A322794 counts uniform factorizations, such as these.
A339561 lists positions of nonzero terms.
A001055 counts factorizations, with strict case A045778.
A001358 lists semiprimes, with squarefree case A006881.
A320655 counts factorizations into semiprimes, with strict case A322353.
The following count vertex-degree partitions and give their Heinz numbers:
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    bfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[bfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[bfacs[n]],{n,100}]
  • PARI
    A280710(n) = (bigomega(n)==2*issquarefree(n)); \\ From A280710.
    A339661(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (dA280710(d), s += A339661(n/d, d))); (s)); \\ Antti Karttunen, May 02 2022

Formula

a(n) = Sum_{d|n} (-1)^A001222(d) * A339742(n/d).

Extensions

More terms and secondary offset added by Antti Karttunen, May 02 2022

A339839 Number of factorizations of n into distinct primes or semiprimes.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 0, 2, 2, 2, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 5, 1, 2, 2, 0, 2, 4, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 2, 4, 1, 1, 0, 2, 1, 5, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 2, 0, 1, 2, 2, 2, 1, 4, 1, 2, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.

Examples

			The a(n) factorizations for n = 6, 16, 30, 60, 180, 210, 240, 420:
  6    5*6    4*15    4*5*9    6*35     4*6*10    2*6*35
  2*3  2*15   6*10    2*6*15   10*21    2*4*5*6   3*4*35
       3*10   2*5*6   2*9*10   14*15    2*3*4*10  4*5*21
       2*3*5  3*4*5   3*4*15   5*6*7              4*7*15
              2*3*10  3*6*10   2*3*35             5*6*14
                      2*3*5*6  2*5*21             6*7*10
                               2*7*15             2*10*21
                               3*5*14             2*14*15
                               3*7*10             2*5*6*7
                               2*3*5*7            3*10*14
                                                  3*4*5*7
                                                  2*3*5*14
                                                  2*3*7*10
		

Crossrefs

A008966 allows only primes.
A320732 is the non-strict version.
A339742 does not allow squares of primes.
A339840 lists the positions of zeros.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A013929 cannot be factored into distinct primes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A322353 into distinct semiprimes.
- A339839 [this sequence] into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A000569 counts graphical partitions (A320922).
- A339656 counts loop-graphical partitions (A339658).

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]],{n,100}]
  • PARI
    A339839(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (dA339839(n/d, d))); (s)); \\ Antti Karttunen, Feb 10 2023

Formula

a(n) = Sum_{d|n squarefree} A322353(n/d).

Extensions

Data section extended up to a(105) by Antti Karttunen, Feb 10 2023
Showing 1-10 of 14 results. Next