cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A326786 Cut-connectivity of the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 0, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 1, 1, 1, 1, 2, 2, 0, 0, 1, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (together with any resulting empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A326853), this is the same as vertex-connectivity (A327051).

Examples

			Positions of first appearances of each integer, together with the corresponding set-systems, are:
     0: {}
     1: {{1}}
     4: {{1,2}}
    52: {{1,2},{1,3},{2,3}}
  2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
		

Crossrefs

Cf. A000120, A013922, A029931, A048793, A070939, A305078, A322388, A322389 (same for MM-numbers), A322390, A326031, A326701, A326749, A326753, A326787 (edge-connectivity), A327051 (vertex-connectivity).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@bpe/@y],Function[del,Length[csm[DeleteCases[DeleteCases[bpe/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[vertConn[bpe[n]],{n,0,100}]

A322389 Vertex-connectivity of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The vertex-connectivity of an integer partition is the minimum number of primes that must be divided out (and any parts then equal to 1 removed) so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			The integer partition (6,4,3) with Heinz number 455 does not become disconnected or empty if 2 is divided out giving (3,3), or if 3 is divided out giving (4,2), but it does become disconnected or empty if both 2 and 3 are divided out giving (); so a(455) = 2.
195 is the Heinz number of (6,3,2), corresponding to the multiset partition {{1},{2},{1,2}}. Removing the vertex 1 gives {{2},{2}}, while removing 2 gives {{1},{1}}. These are both connected, so both vertices must be removed to obtain a disconnected or empty multiset partition; hence a(195) = 2.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Array[vertConn@*primeMS,100]

A322387 Number of 2-vertex-connected integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 1, 6, 2, 10, 8, 13, 9, 26, 14, 35, 28, 50, 37, 77, 54, 101, 84, 138, 110, 205, 149, 252, 222, 335, 287, 455, 375, 577, 522, 740, 657, 985
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

An integer partition is 2-vertex-connected if the prime factorizations of the parts form a connected hypergraph that is still connected if any single prime number is divided out of all the parts (and any parts then equal to 1 are removed).

Examples

			The a(14) = 10 2-vertex-connected integer partitions:
  (14)  (8,6)   (6,4,4)   (6,3,3,2)  (6,2,2,2,2)
        (10,4)  (6,6,2)   (6,4,2,2)
        (12,2)  (10,2,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[IntegerPartitions[n],vertConn[#]>1&]],{n,30}]

Extensions

a(41)-a(42) from Jinyuan Wang, Jun 20 2020

A327082 BII-numbers of set-systems with cut-connectivity 2.

Original entry on oeis.org

4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 256, 257, 384, 385, 512, 514, 640, 642, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
We define the cut-connectivity (A326786, A327237), of a set-system to be the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a disconnected or empty set-system, with the exception that a set-system with one vertex and no edges has cut-connectivity 1. Except for cointersecting set-systems (A326853, A327039), this is the same as vertex-connectivity (A327334, A327051).

Examples

			The sequence of all set-systems with cut-connectivity 2 together with their BII-numbers begins:
    4: {{1,2}}
    5: {{1},{1,2}}
    6: {{2},{1,2}}
    7: {{1},{2},{1,2}}
   16: {{1,3}}
   17: {{1},{1,3}}
   24: {{3},{1,3}}
   25: {{1},{3},{1,3}}
   32: {{2,3}}
   34: {{2},{2,3}}
   40: {{3},{2,3}}
   42: {{2},{3},{2,3}}
  256: {{1,4}}
  257: {{1},{1,4}}
  384: {{4},{1,4}}
  385: {{1},{4},{1,4}}
  512: {{2,4}}
  514: {{2},{2,4}}
  640: {{4},{2,4}}
  642: {{2},{4},{2,4}}
The first term involving an edge of size 3 is 832: {{1,2,3},{1,4},{2,4}}.
		

Crossrefs

Positions of 2's in A326786.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
BII-numbers for spanning edge-connectivity 2 are A327108.
The cut-connectivity 1 version is A327098.
The cut-connectivity > 1 version is A327101.
Covering 2-cut-connected set-systems are counted by A327112.
Covering set-systems with cut-connectivity 2 are counted by A327113.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
    Select[Range[0,100],vertConnSys[bpe/@bpe[#]]==2&]

A327101 BII-numbers of 2-cut-connected set-systems (cut-connectivity >= 2).

Original entry on oeis.org

4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107
Offset: 1

Views

Author

Gus Wiseman, Aug 22 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is 2-cut-connected if any single vertex can be removed (along with any empty edges) without making the set-system disconnected or empty. Except for cointersecting set-systems (A326853), this is the same as 2-vertex-connectivity.

Examples

			The sequence of all 2-cut-connected set-systems together with their BII-numbers begins:
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
  16: {{1,3}}
  17: {{1},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  32: {{2,3}}
  34: {{2},{2,3}}
  40: {{3},{2,3}}
  42: {{2},{3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  63: {{1},{2},{1,2},{3},{1,3},{2,3}}
		

Crossrefs

Positions of numbers >= 2 in A326786.
2-cut-connected graphs are counted by A013922, if we assume A013922(2) = 0.
2-cut-connected integer partitions are counted by A322387.
BII-numbers for cut-connectivity 2 are A327082.
BII-numbers for cut-connectivity 1 are A327098.
BII-numbers for non-spanning edge-connectivity >= 2 are A327102.
BII-numbers for spanning edge-connectivity >= 2 are A327109.
Covering 2-cut-connected set-systems are counted by A327112.
Covering set-systems with cut-connectivity 2 are counted by A327113.
The labeled cut-connectivity triangle is A327125, with unlabeled version A327127.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Select[Range[0,100],cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]>=2&]

Formula

If (*) is intersection and (-) is complement, we have A327101 * A326704 = A326751 - A058891, i.e., the intersection of A327101 (this sequence) with A326704 (antichains) is the complement of A058891 (singletons) in A326751 (blobs).

A322400 Heinz numbers of integer partitions with vertex-connectivity 1.

Original entry on oeis.org

3, 5, 7, 9, 11, 17, 19, 21, 23, 25, 27, 31, 41, 49, 53, 57, 59, 63, 67, 81, 83, 97, 103, 109, 115, 121, 125, 127, 131, 133, 147, 157, 159, 171, 179, 189, 191, 211, 227, 241, 243, 277, 283, 289, 311, 331, 343, 353, 361, 367, 371, 377, 393, 399, 401, 419, 431
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The vertex-connectivity of an integer partition is the minimum number of primes that must be divided out (and any parts then equal to 1 removed) so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			The sequence of all integer partitions with vertex-connectivity 1 begins: (2), (3), (4), (2,2), (5), (7), (8), (4,2), (9), (3,3), (2,2,2), (11), (13), (4,4), (16), (8,2), (17), (4,2,2), (19), (2,2,2,2), (23), (25), (27), (29), (9,3), (5,5), (3,3,3), (31), (32), (8,4), (4,4,2), (37), (16,2), (8,2,2), (41), (4,2,2,2), (43).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Select[Range[100],vertConn[primeMS[#]]==1&]
Showing 1-6 of 6 results.