cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322448 Numbers whose prime factorization contains at least one composite exponent.

Original entry on oeis.org

16, 48, 64, 80, 81, 112, 144, 162, 176, 192, 208, 240, 256, 272, 304, 320, 324, 336, 368, 400, 405, 432, 448, 464, 496, 512, 528, 560, 567, 576, 592, 624, 625, 648, 656, 688, 704, 720, 729, 752, 768, 784, 810, 816, 832, 848, 880, 891, 912, 944, 960, 976, 1008
Offset: 1

Views

Author

Alois P. Heinz, Dec 08 2018

Keywords

Comments

The asymptotic density of this sequence is Product_{p prime} (1 - 1/p^4 + Sum_{q prime >= 5} 1/p^q - 1/p^(q-1)) = 0.05328066264472198953... (using the method of Shevelev, 2016). - Amiram Eldar, Nov 08 2020

Examples

			16 = 2^4 is a term because 4 is a composite exponent here.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
          `if`(n=1, 0, a(n-1)) while andmap(i-> i[2]=1 or
           isprime(i[2]), ifactors(k)[2]) do od; k
        end:
    seq(a(n), n=1..70);
  • Mathematica
    Select[Range[1000], AnyTrue[FactorInteger[#][[;; , 2]], CompositeQ] &] (* Amiram Eldar, Nov 08 2020 *)
  • PARI
    isok(m) = #select(x->((x>1) && !isprime(x)), factor(m)[,2]) > 0; \\ Michel Marcus, Dec 02 2020