A322448 Numbers whose prime factorization contains at least one composite exponent.
16, 48, 64, 80, 81, 112, 144, 162, 176, 192, 208, 240, 256, 272, 304, 320, 324, 336, 368, 400, 405, 432, 448, 464, 496, 512, 528, 560, 567, 576, 592, 624, 625, 648, 656, 688, 704, 720, 729, 752, 768, 784, 810, 816, 832, 848, 880, 891, 912, 944, 960, 976, 1008
Offset: 1
Keywords
Examples
16 = 2^4 is a term because 4 is a composite exponent here.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Vladimir Shevelev, A fast computation of density of exponentially S-numbers, arXiv:1602.04244 [math.NT], 2016.
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, 0, a(n-1)) while andmap(i-> i[2]=1 or isprime(i[2]), ifactors(k)[2]) do od; k end: seq(a(n), n=1..70);
-
Mathematica
Select[Range[1000], AnyTrue[FactorInteger[#][[;; , 2]], CompositeQ] &] (* Amiram Eldar, Nov 08 2020 *)
-
PARI
isok(m) = #select(x->((x>1) && !isprime(x)), factor(m)[,2]) > 0; \\ Michel Marcus, Dec 02 2020
Comments