A322462 Numbers on the 0-1-12 line in a spiral on a grid of equilateral triangles.
0, 1, 12, 13, 36, 37, 72, 73, 120, 121, 180, 181, 252, 253, 336, 337, 432, 433, 540, 541, 660, 661, 792, 793, 936, 937, 1092, 1093, 1260, 1261, 1440, 1441, 1632, 1633, 1836, 1837, 2052, 2053, 2280, 2281, 2520, 2521, 2772, 2773, 3036, 3037, 3312, 3313, 3600
Offset: 0
Examples
a(0) = 0 a(1) = a(1 - 1) + 1 = 0 + 1 a(2) = (3/2) * 2 * (2 + 2) = 3 * 4 = 12 a(3) = a(3 - 1) + 1 = 12 + 1 = 13 a(4) = (3/2) * 4*(4 + 2) = 3 * 2 * 6 = 6 * 6 = 36 a(5) = a(4) + 1 = 36 + 1 = 37.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Hans G. Oberlack, Triangle spiral line 0-1-12-13
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Cf. A049598.
Programs
-
Maple
seq(coeff(series(-x*(x^3-x^2+11*x+1)/((x+1)^2*(x-1)^3),x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Dec 19 2018
-
Mathematica
a[0] = 0; a[n_] := a[n] = If[OddQ[n], a[n - 1] + 1, 3/2*n*(n + 2)]; Array[a, 50, 0] (* Amiram Eldar, Dec 09 2018 *)
-
PARI
concat(0, Vec(x*(1 + 11*x - x^2 + x^3) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Dec 09 2018
Formula
a(n) = (3/2)*n*(n+2) = A049598(n/2) if n even, a(n) = a(n-1)+1 if n odd.
G.f.: -x*(x^3-x^2+11*x+1)/((x+1)^2*(x-1)^3). - Alois P. Heinz, Dec 09 2018
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4. - Colin Barker, Dec 09 2018
Extensions
Examples added by Hans G. Oberlack, Dec 20 2018
Comments