cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322518 Binomial transform of the Apéry numbers (A005259).

Original entry on oeis.org

1, 6, 84, 1680, 39240, 999216, 26899896, 752939424, 21691531800, 638947312080, 19155738105504, 582589712312064, 17930566188602136, 557417298916695600, 17477836958370383280, 552090876791399769600, 17552554240486710112920, 561230779055361080132880
Offset: 0

Views

Author

Sarah Arpin, Dec 13 2018

Keywords

Comments

Starting with the a(3) term, each term is divisible by 8. (Empirical observation.)
The above is true and follows easily from the pair of known congruences for the Apéry numbers A(n): A(2*n) == 1 (mod 8) and A(2n+1) == 5 (mod 8). - Peter Bala, Jan 06 2020

Examples

			a(2) = binomial(2,0)*A(0) + binomial(2,1)*A(1) + binomial(2,2)*A(2), where A(k) denotes the k-th Apéry number. Using this definition:
a(2) = binomial(2,0)*(binomial(0,0)*binomial(0,0))^2 + binomial(2,1)*((binomial(1,0)*binomial(1,0))^2 + (binomial(1,1)*binomial(2,1))^2) + binomial(2,2)*((binomial(2,0)*binomial(2,0))^2 + (binomial(2,1)*binomial(3,1))^2 + (binomial(2,2)*binomial(4,2))^2) = 84.
		

Crossrefs

Programs

  • Julia
    function BinomialTransform(seq)
        N = length(seq)
        bt = Array{BigInt,1}(undef,N)
        bt[1] = seq[1]
        for k in 1:N-1
            next = BigInt(0)
            for j in 0:k next += binomial(k, j)*seq[j+1] end
            bt[k+1] = next
        end
    bt end
    BinomialTransform([A005259(n) for n in 0:18]) |> println # Peter Luschny, Jan 06 2020
  • Mathematica
    a[n_] := Sum[Binomial[n, k] * Sum[(Binomial[k, j] * Binomial[k+j, j])^2, {j, 0, k}], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
  • Sage
    def OEISbinomial_transform(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + ((binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    Apery = oeis('A005259')
    OEISBinom = OEISbinomial_transform(18,Apery.first_terms(20))
    

Formula

a(n) ~ 2^(n - 3/4) * 3^(n + 3/2) * (1 + sqrt(2))^(2*n - 1) / (Pi*n)^(3/2). - Vaclav Kotesovec, Dec 17 2018
The Gauss congruences hold: a(n*p^k) == a(n*p^(k-1)) (mod p^k) for all primes p and n a positive integer. - Peter Bala, Jan 06 2020