cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322525 Numbers such that the list of exponents of their factorization is a palindromic list of primes.

Original entry on oeis.org

2700, 5292, 9000, 13068, 18252, 24300, 24500, 24696, 31212, 38988, 47628, 55125, 57132, 60500, 68600, 84500, 90828, 95832, 103788, 117612, 136125, 144500, 147852, 158184, 164268, 166012, 180500, 181548, 190125, 199692, 218700, 231525, 231868, 238572, 243000, 264500, 266200, 280908, 303372, 325125
Offset: 1

Views

Author

Pierandrea Formusa, Dec 13 2018

Keywords

Comments

I mean nontrivial palindrome: more than one number and not all equal numbers.
Factorization is meant to produce p1^e1*...*pk^ek, with pi in increasing order.

Examples

			9000 is a term as 9000=2^3*3^2*5^3 and the correspondent exponents list [3,2,3] is a palindromic list of primes.
		

Crossrefs

Subsequence of A242414.

Programs

  • Mathematica
    aQ[s_] := Length[Union[s]]>1 && AllTrue[s, PrimeQ] && PalindromeQ[s]; Select[Range[1000], aQ[FactorInteger[#][[;;,2]]] &] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    isok(n) = (ve=factor(n)[,2]~) && (Vecrev(ve)==ve) && (#ve>1) && (#Set(ve)>1) && (#select(x->(!isprime(x)), ve) == 0); \\ Michel Marcus, Dec 14 2018
  • Python
    from sympy.ntheory import factorint,isprime
    def all_prime(l):
        for i in l:
            if not(isprime(i)): return(False)
        return(True)
    def all_equal(l):
        ll=len(l)
        set_l=set(l)
        lsl=list(set_l)
        llsl=len(lsl)
        return(llsl==1)
    def pal(l):
        return(l == l[::-1])
    n=350000
    r=""
    lp=[]
    lexp=[]
    def calc(n):
        global lp,lexp
        a=factorint(n)
        lp=[]
        for p in a.keys():
            lp.append(p)
        lexp=[]
        for exp in a.values():
            lexp.append(exp)
        return
    for i in range(4,n):
        calc(i)
        if len(lexp)>1:
            if all_prime(lexp):
                if not(all_equal(lexp)):
                    if pal(lexp):
                        r += ","+str(i)
    print(r[1:])