A322525 Numbers such that the list of exponents of their factorization is a palindromic list of primes.
2700, 5292, 9000, 13068, 18252, 24300, 24500, 24696, 31212, 38988, 47628, 55125, 57132, 60500, 68600, 84500, 90828, 95832, 103788, 117612, 136125, 144500, 147852, 158184, 164268, 166012, 180500, 181548, 190125, 199692, 218700, 231525, 231868, 238572, 243000, 264500, 266200, 280908, 303372, 325125
Offset: 1
Keywords
Examples
9000 is a term as 9000=2^3*3^2*5^3 and the correspondent exponents list [3,2,3] is a palindromic list of primes.
Crossrefs
Subsequence of A242414.
Programs
-
Mathematica
aQ[s_] := Length[Union[s]]>1 && AllTrue[s, PrimeQ] && PalindromeQ[s]; Select[Range[1000], aQ[FactorInteger[#][[;;,2]]] &] (* Amiram Eldar, Dec 14 2018 *)
-
PARI
isok(n) = (ve=factor(n)[,2]~) && (Vecrev(ve)==ve) && (#ve>1) && (#Set(ve)>1) && (#select(x->(!isprime(x)), ve) == 0); \\ Michel Marcus, Dec 14 2018
-
Python
from sympy.ntheory import factorint,isprime def all_prime(l): for i in l: if not(isprime(i)): return(False) return(True) def all_equal(l): ll=len(l) set_l=set(l) lsl=list(set_l) llsl=len(lsl) return(llsl==1) def pal(l): return(l == l[::-1]) n=350000 r="" lp=[] lexp=[] def calc(n): global lp,lexp a=factorint(n) lp=[] for p in a.keys(): lp.append(p) lexp=[] for exp in a.values(): lexp.append(exp) return for i in range(4,n): calc(i) if len(lexp)>1: if all_prime(lexp): if not(all_equal(lexp)): if pal(lexp): r += ","+str(i) print(r[1:])
Comments