cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322543 Number of triadic partitions of the unit square into (2n+1) subrectangles.

Original entry on oeis.org

1, 2, 12, 96, 879, 8712, 90972, 985728, 10979577, 124937892, 1446119664, 16972881120, 201526230555, 2416309004872, 29215072931136, 355800894005760, 4360705642282569, 53744080256387478, 665667989498682936, 8281518339078928800, 103441301833577854041, 1296713265300164761632
Offset: 0

Views

Author

Yu Hin Au, Dec 14 2018

Keywords

Comments

A kind of two-dimensional ternary Catalan number. This sequence enumerates the decompositions of the unit square into 2n+1 rectangles obtained by the following algorithm.
(a) Start with the unit square.
(b) Perform the following operation n times:
(1) Choose a rectangle in the current decomposition.
(2) Trisect this rectangle into three rectangles horizontally or vertically.
Note that different sequences of trisections can produce the same decomposition.

Crossrefs

Cf. A000108 (Catalan numbers), A005408, A236339 (decompositions of unit square using bisections).

Programs

  • Maple
    a:= n-> coeff(series(RootOf(G^9-2*G^3+G-x, G), x, 2*n+2), x, 2*n+1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 14 2018
  • Mathematica
    a[n_] := SeriesCoefficient[InverseSeries[x - 2 x^3 + x^9 + O[x]^(2n+2), x], {x, 0, 2n+1}];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 13 2019, from PARI *)
  • PARI
    a(n)={polcoef(serreverse(x - 2*x^3 + x^9 + O(x^(2*n+2))), 2*n+1)} \\ Andrew Howroyd, Dec 14 2018

Formula

Recurrence relation: a(n) = C(2n+1) with C(1) = 1 and C(n) = 2 Sum_{i1,i2,i3} C(i1)C(i2)C(i3) - Sum_{i1,i2,i3,i4,i5,i6,i7,i8,i9} C(i1)C(i2)C(i3)C(i4)C(i5)C(i6)C(i7)C(i8)C(i9). The first sum is over all 3-compositions of n into positive integers (i1+i2+i3=n), and the second sum is over all 9-compositions of n into positive integers (i1+i2+...+i9=n).
a(n) = [x^(2n+1)] G(x), where G(x) satisfies: G(x)^9 - 2*G(x)^3 + G(x) - x = 0.