A322557 Smallest k such that floor(N*sqrt(Sum_{m=1..k} 6/m^2)) = floor(N*Pi), where N = 10^n.
7, 23, 600, 1611, 10307, 359863, 1461054, 17819245, 266012440, 1619092245, 10634761313, 97509078554, 1203836807622, 10241799698090, 294871290395291, 4004525174270251, 24827457879988026, 112840588371964574, 2064072875704476882, 15243903003939891921
Offset: 0
Examples
floor((10^0)*sqrt(Sum_{m=1..7} 6/m^2)) = 3. floor((10^1)*sqrt(Sum_{m=1..23} 6/m^2)) = 31. floor((10^2)*sqrt(Sum_{m=1..600} 6/m^2)) = 314. floor((10^3)*sqrt(Sum_{m=1..1611} 6/m^2)) = 3141. floor((10^4)*sqrt(Sum_{m=1..10307} 6/m^2)) = 31415. floor((10^5)*sqrt(Sum_{m=1..359863} 6/m^2)) = 314159.
Links
- Zachary Russ, Klarice Sequence
- Jon E. Schoenfield, Magma program
Crossrefs
Programs
-
PARI
a(n) = {my(k = 1); t = floor(10^(n)*Pi); while(floor(10^(n)*sqrt(sum(m = 1, k, 6/m^2))) != t, k++); k; } \\ Jinyuan Wang, Aug 30 2019
Extensions
a(6)-a(19) from Jon E. Schoenfield, Aug 31 2019
Comments