Zachary Russ has authored 3 sequences.
A333997
Number of electrons per subshell in element Z=n expressed as a 56-bit unsigned integer.
Original entry on oeis.org
1, 2, 6, 10, 26, 42, 58, 74, 90, 106, 234, 362, 874, 1386, 1898, 2410, 2922, 3434, 68970, 134506, 138602, 142698, 146794, 89450, 154986, 159082, 163178, 167274, 109930, 175466, 437610, 699754, 961898, 1224042, 1486186, 1748330
Offset: 1
|-----|----------------------------------------------------------------------------|
| | a(n) [bin] |
| n | Electrons per Subshell |
| | 7p|7s| 6d | 6p|6s| 5f | 5d | 5p|5s| 4f | 4d | 4p|4s| 3d | 3p|3s| 2p|2s|1s |
|-----|----|--|----|---|--|----|----|---|--|----|----|---|--|----|---|--|---|--|---|
| 1 | 000 00 0000 000 00 0000 0000 000 00 0000 0000 000 00 0000 000 00 000 00 01 |
| 2 | 000 00 0000 000 00 0000 0000 000 00 0000 0000 000 00 0000 000 00 000 00 10 |
| 3 | 000 00 0000 000 00 0000 0000 000 00 0000 0000 000 00 0000 000 00 000 01 10 |
| 4 | 000 00 0000 000 00 0000 0000 000 00 0000 0000 000 00 0000 000 00 000 10 10 |
| 5 | 000 00 0000 000 00 0000 0000 000 00 0000 0000 000 00 0000 000 00 001 10 10 |
| 6 | 000 00 0000 000 00 0000 0000 000 00 0000 0000 000 00 0000 000 00 010 10 10 |
| . | . |
| . | . |
| . | . |
| 113 | 001 10 1010 110 10 1110 1010 110 10 1110 1010 110 10 1010 110 10 110 10 10 |
| 114 | 010 10 1010 110 10 1110 1010 110 10 1110 1010 110 10 1010 110 10 110 10 10 |
| 115 | 011 10 1010 110 10 1110 1010 110 10 1110 1010 110 10 1010 110 10 110 10 10 |
| 116 | 100 10 1010 110 10 1110 1010 110 10 1110 1010 110 10 1010 110 10 110 10 10 |
| 117 | 101 10 1010 110 10 1110 1010 110 10 1110 1010 110 10 1010 110 10 110 10 10 |
| 118 | 110 10 1010 011 10 1110 1010 110 10 1110 1010 110 10 1010 110 10 110 10 10 |
|-----|----------------------------------------------------------------------------|
A333662
Number of electrons per shell in element Z=n expressed as a 32-bit unsigned integer.
Original entry on oeis.org
1, 2, 6, 10, 14, 18, 22, 26, 30, 34, 98, 162, 226, 290, 354, 418, 482, 546, 2594, 4642, 4706, 4770, 4834, 2914, 4962, 5026, 5090, 5154, 3234, 5282, 7330, 9378, 11426, 13474, 15522, 17570, 148642, 279714, 281762, 283810
Offset: 1
|-----|------------|------------|----------------------------------------|
| | | | a(n) [bin] |
| n | a(n) [dec] | a(n) [hex] | Electrons per Shell |
| | | | Q | P | O | N | M | L | K |
|-----|------------|------------|-----|-----|------|------|-----|----|---|
| 1 | 1 | 0x00000001 | 0000 00000 000000 000000 00000 0000 01 |
| 2 | 2 | 0x00000002 | 0000 00000 000000 000000 00000 0000 10 |
| 3 | 6 | 0x00000006 | 0000 00000 000000 000000 00000 0001 10 |
| 4 | 10 | 0x0000000a | 0000 00000 000000 000000 00000 0010 10 |
| 5 | 14 | 0x0000000e | 0000 00000 000000 000000 00000 0011 10 |
| 6 | 18 | 0x00000012 | 0000 00000 000000 000000 00000 0100 10 |
| . | . | . | . |
| . | . | . | . |
| . | . | . | . |
| 113 | 960562338 | 0x394104a2 | 0011 10010 100000 100000 10010 1000 10 |
| 114 | 1228997794 | 0x494104a2 | 0100 10010 100000 100000 10010 1000 10 |
| 115 | 1497433250 | 0x594104a2 | 0101 10010 100000 100000 10010 1000 10 |
| 116 | 1765868706 | 0x694104a2 | 0110 10010 100000 100000 10010 1000 10 |
| 117 | 2034304162 | 0x794104a2 | 0111 10010 100000 100000 10010 1000 10 |
| 118 | 2302739618 | 0x894104a2 | 1000 10010 100000 100000 10010 1000 10 |
|-----|------------|------------|----------------------------------------|
A322557
Smallest k such that floor(N*sqrt(Sum_{m=1..k} 6/m^2)) = floor(N*Pi), where N = 10^n.
Original entry on oeis.org
7, 23, 600, 1611, 10307, 359863, 1461054, 17819245, 266012440, 1619092245, 10634761313, 97509078554, 1203836807622, 10241799698090, 294871290395291, 4004525174270251, 24827457879988026, 112840588371964574, 2064072875704476882, 15243903003939891921
Offset: 0
floor((10^0)*sqrt(Sum_{m=1..7} 6/m^2)) = 3.
floor((10^1)*sqrt(Sum_{m=1..23} 6/m^2)) = 31.
floor((10^2)*sqrt(Sum_{m=1..600} 6/m^2)) = 314.
floor((10^3)*sqrt(Sum_{m=1..1611} 6/m^2)) = 3141.
floor((10^4)*sqrt(Sum_{m=1..10307} 6/m^2)) = 31415.
floor((10^5)*sqrt(Sum_{m=1..359863} 6/m^2)) = 314159.
-
a(n) = {my(k = 1); t = floor(10^(n)*Pi); while(floor(10^(n)*sqrt(sum(m = 1, k, 6/m^2))) != t, k++); k; } \\ Jinyuan Wang, Aug 30 2019
Comments