cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322593 a(n) = 2^n + 2*n^2 + 1.

Original entry on oeis.org

2, 5, 13, 27, 49, 83, 137, 227, 385, 675, 1225, 2291, 4385, 8531, 16777, 33219, 66049, 131651, 262793, 525011, 1049377, 2098035, 4195273, 8389667, 16778369, 33555683, 67110217, 134219187, 268437025, 536872595, 1073743625, 2147485571, 4294969345, 8589936771
Offset: 0

Views

Author

Keywords

Comments

For n = 3..7, a(n) is the number of evaluating points on the n-dimensional sphere (also n-space with weight function exp(-r^2) or exp(-r)) in a degree 7 cubature rule.

References

  • Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.

Crossrefs

Programs

  • Magma
    [2^n + 2*n^2 + 1: n in [0..33]]; // Marius A. Burtea, Dec 28 2018
  • Mathematica
    Table[2^n + 2*n^2 + 1, {n, 0, 50}]
    LinearRecurrence[{5,-9,7,-2},{2,5,13,27},50] (* Harvey P. Dale, Mar 23 2021 *)
  • Maxima
    makelist(2^n + 2*n^2 + 1, n, 0, 50);
    

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
a(n) = a(n-1) + A100315(n-1), n >= 2.
G.f.: (2 - 5*x + 6*x^2 - 7*x^3)/((1 - 2*x)*(1 - x)^3)
E.g.f.: exp(2*x) + (1 + 2*x + 2*x^2)*exp(x).