cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A221219 Numbers k such that sigma(k) divides Sum_{d|k} sigma(d).

Original entry on oeis.org

1, 198, 608, 4680, 11322, 20826, 56608, 60192, 179424, 1737000, 2578968, 3055150, 3441888, 5604192, 6008184, 6331104, 302459850, 320457888, 477229032, 565344850, 579667086, 589459104, 731925000, 766073448, 907521650, 928765600, 3586977576, 3732082848, 6487717600
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2013

Keywords

Comments

A066218 is a subsequence of this sequence.
Numbers k such that A000203(k) divides A007429(k). - Jaroslav Krizek, Dec 22 2018
Corresponding values of (Sum_{d|k} sigma(d)) / sigma(k) for numbers k from this sequence: 1, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, ... - Jaroslav Krizek, Dec 22 2018

Examples

			4680 is in the sequence because sigma(4680)=16380, its proper divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 18, 20, 24, 26, 30, 36, 39, 40, 45, 52, 60, 65, 72, 78, 90, 104, 117, 120, 130, 156, 180, 195, 234, 260, 312, 360, 390, 468, 520, 585, 780, 936, 1170, 1560, 2340 and the sum of their sigma values is 32760. Finally 32760/16380=2.
		

Crossrefs

Programs

  • Magma
    [k: k in [1..1000000] | &+[SumOfDivisors(d): d in Divisors(k)] mod  SumOfDivisors(k) eq 0] // Jaroslav Krizek, Dec 22 2018
    
  • Maple
    with(numtheory);
    A221219:=proc(q) local a,b,j,n;
    for n from 1 to q do a:=divisors(n); b:=add(sigma(a[j]),j=1..nops(a));
      if type(b/sigma(n),integer) then print(n); fi; od; end:
    A221219(10^10);
  • Mathematica
    f1[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; f2[p_, e_] := (p^(e+1) - 1)/(p - 1); aQ[1] = True; aQ[n_] := Module[{f = FactorInteger[n]}, Divisible[Times @@ f1 @@@ f, Times @@ f2 @@@ f]]; Select[Range[10^5], aQ] (* Amiram Eldar, Dec 23 2018 *)
  • PARI
    isok(n) = (sumdiv(n, d, sigma(d)) % sigma(n) == 0); \\ Michel Marcus, Dec 22 2018

Extensions

a(10)-a(28) from Donovan Johnson, Apr 05 2013
1 prepended by Jaroslav Krizek, Dec 22 2018

A322656 Denominator of (Sum_{d|n} sigma(d)) / sigma(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 3, 8, 15, 13, 9, 12, 28, 14, 2, 24, 31, 18, 13, 20, 6, 32, 9, 24, 6, 31, 7, 20, 56, 30, 18, 32, 21, 48, 27, 16, 91, 38, 5, 56, 45, 42, 8, 44, 84, 13, 18, 48, 124, 19, 93, 72, 98, 54, 15, 72, 20, 16, 45, 60, 24, 62, 8, 52, 127, 4, 36, 68, 126, 96
Offset: 1

Views

Author

Jaroslav Krizek, Dec 22 2018

Keywords

Comments

Denominator of A007429(n) / A000203(n).
Also denominator of Sum_{d|n} (sigma(d) / sigma(n)).

Examples

			For n = 4; a(4) = denominator((Sum_{d|4} sigma(d)) / sigma(4)) = denominator((1 + 3 + 7) / (1 + 2 + 4)) = denominator(11/7) = 7.
		

Crossrefs

Cf. A000203, A007429, A319296, A221219, A322655 (numerator).

Programs

  • Magma
    [Denominator(&+[SumOfDivisors(d): d in Divisors(n)] /  SumOfDivisors(n)): n in [1..1000]];
    
  • Mathematica
    Table[Denominator[Sum[DivisorSigma[1, d], {d, Divisors[n]}] / DivisorSigma[1, n]], {n, 1, 100}] (* Vaclav Kotesovec, Dec 22 2018 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, sigma(d))/sigma(n)); \\ Michel Marcus, Dec 22 2018

Formula

a(n) = 1 for numbers in A221219.
a(n) = A000203(n) / gcd(A000203(n), A007429(n)). - Antti Karttunen, Nov 15 2021
Showing 1-2 of 2 results.