cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322656 Denominator of (Sum_{d|n} sigma(d)) / sigma(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 3, 8, 15, 13, 9, 12, 28, 14, 2, 24, 31, 18, 13, 20, 6, 32, 9, 24, 6, 31, 7, 20, 56, 30, 18, 32, 21, 48, 27, 16, 91, 38, 5, 56, 45, 42, 8, 44, 84, 13, 18, 48, 124, 19, 93, 72, 98, 54, 15, 72, 20, 16, 45, 60, 24, 62, 8, 52, 127, 4, 36, 68, 126, 96
Offset: 1

Views

Author

Jaroslav Krizek, Dec 22 2018

Keywords

Comments

Denominator of A007429(n) / A000203(n).
Also denominator of Sum_{d|n} (sigma(d) / sigma(n)).

Examples

			For n = 4; a(4) = denominator((Sum_{d|4} sigma(d)) / sigma(4)) = denominator((1 + 3 + 7) / (1 + 2 + 4)) = denominator(11/7) = 7.
		

Crossrefs

Cf. A000203, A007429, A319296, A221219, A322655 (numerator).

Programs

  • Magma
    [Denominator(&+[SumOfDivisors(d): d in Divisors(n)] /  SumOfDivisors(n)): n in [1..1000]];
    
  • Mathematica
    Table[Denominator[Sum[DivisorSigma[1, d], {d, Divisors[n]}] / DivisorSigma[1, n]], {n, 1, 100}] (* Vaclav Kotesovec, Dec 22 2018 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, sigma(d))/sigma(n)); \\ Michel Marcus, Dec 22 2018

Formula

a(n) = 1 for numbers in A221219.
a(n) = A000203(n) / gcd(A000203(n), A007429(n)). - Antti Karttunen, Nov 15 2021