A322799 Number of compositions (ordered partitions) of n into heptagonal numbers (A000566).
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 29, 37, 46, 57, 71, 89, 112, 143, 183, 233, 295, 372, 468, 588, 741, 937, 1188, 1506, 1908, 2414, 3049, 3848, 4857, 6136, 7757, 9812, 12414, 15702, 19852, 25089, 31703, 40061, 50631, 64004, 80923, 102318
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..9828
- Eric Weisstein's World of Mathematics, Heptagonal Number
- Index entries for sequences related to compositions
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, (t-> `if`(t*(5*t-3)/2>n, t-1, t))(1+h(n-1))) end: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-i*(5*i-3)/2), i=1..h(n))) end: seq(a(n), n=0..60); # Alois P. Heinz, Dec 28 2018
-
Mathematica
nmax = 53; CoefficientList[Series[1/(1 - Sum[x^(k (5 k - 3)/2), {k, 1, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=1} x^(k*(5*k-3)/2)).